Capitolo 1

Introduzione

Questo capitolo presenta un'introduzione al lavoro di tesi. In particolare, verra prima descritta 1'azienda
presso la quale ¢ stato svolto il lavoro di tesi e poi si illustreranno gli obiettivi e 1 risultati attesi.

1.1 Le Societa I.T.lLA s.r.l e F.R. Trattamenti Galvanici

Il programma sviluppato appartiene a un progetto piu complesso, tuttora in lavorazione, effettuato
dalla societa ITIA s.r.l. come applicazione enterprise per la gestione amministrativa di una societa di
trattamenti galvanici, la F.R..

Dall’introduzione dei PC in azienda, avvenuta nei primi anni *90, la societa F.R. ¢ sempre stata in
grado di mettere a disposizione del proprio personale le risorse hardware informatiche piu adatte alle
proprie esigenze lavorative; tuttavia, il buon “livello” hardware non ¢ mai stato affiancato da un valido
supporto software, eccezione fatta per il settore contabile.

Anche nella realta passata dell’azienda 1’obiettivo principale ¢ sempre stato quello di soddisfare le
esigenze qualitative dei propri clienti. In quest’ottica I’attenzione ¢ stata rivolta maggiormente nei
reparti produzione/qualita. Il graduale aumento commerciale ha condotto alla creazione di ulteriori
settori interni sempre piu specializzati e collaboranti ed il relativo aumento del personale.

Le esigenze dirigenziali hanno richiesto alla produzione flussi di dati sempre piu precisi, real time e
dettagliati, mentre dal settore commerciale, qualitativo e amministrativo sono aumentate le richieste di
informazioni riepilogative, statistiche e previsionali.

Il continuo aumento di tali richieste, la decentralizzata struttura informatica, la mancanza di una
strategia risolutiva di immediato effetto, la non adozione di strumenti per l’office automation,
I’impossibilita di rilevazioni in tempo reale della produzione, la scarsa comunicativita dei singoli settori
ed altri fattori di minor rilievo, hanno portato ad un forte disagio logistico 1’intera azienda.

Dai primi anni del 2000 si ¢ affermata la volonta di risolvere le problematiche precedentemente
accennate; gli investimenti in tale direzione sono stati di entita rilevante ma purtroppo non sufficienti.
La soluzione a queste problematiche ¢ stata appunto quella di investire verso una soluzione di tipo
enterprise, costruita su misura, evitando I’adattamento di qualche prodotto in commercio
“prefabbricato”.

Il primo passo ¢ stato quello di incaricare una societa (I'.T.I.A.) che lavorasse all’interno dell” F.R. e
che provvedesse integralmente alla realizzazione del progetto; in secondo luogo si ¢ reso necessario
ampliare la struttura hardware e provvedere all’addestramento graduale del personale addetto; quindi
sono stati installati dei programmi pilota al fine di valutare prestazioni e potenzialita della soluzione
scelta.

In data odierna il progetto ¢ in corso di sviluppo ed ¢ orientato alla risoluzione tempestiva delle
problematiche relative al processo di lavorazione.

1.2 Obiettivi del lavoro di tesi

La possibilita di lavorare a stretto contatto con i futuri utenti, sebbene sia una situazione non comune,
ha permesso un dialogo continuo e proficuo con gli utenti e la realizzazione di un prodotto
confezionato su misura.Oltre alle indispensabili specifiche tecniche fornite dal cliente questo stretto
contatto ha permesso di capire quali sono le esigenze pratiche dell'utente e quindi raffinare sempre di
piu il lavoro. Si € cosi arrivati a diverse release sempre piu rispondenti alle reali necessita.

Il progetto nella sua interezza si propone di gestire la parte amministrativa della societa che ha
commissionato il lavoro e permette di seguire ogni processo lavorativo in tutto il suo svolgersi.
Entrando piu nello specifico la richiesta era di poter seguire le fasi lavorative di ogni singolo cliente
dalla ricezione dell'ordine fino alla consegna del prodotto lavorato. Per fare questo ¢ stato introdotto il
concetto di "cartellino" ovvero un'etichetta (sia digitale che fisica) da associare ad ogni prodotto da
lavorare in cui sono annotate tutte le informazioni necessarie. Cosi facendo ¢ possibile sapere in ogni
istante in che fase si trova ogni prodotto in lavorazione, quali processi sta subendo, chi ¢ l'operatore
responsabile, il tempo rimanente e altre informazioni. La necessita di avere sotto controllo in maniera
cosi precisa ogni fase lavorativa nasce da una duplice esigenza: da un lato poter sapere con esattezza i
costi di ogni singola lavorazione e quindi poter intervenire per migliorare e ottimizzare laddove cio si
renda necessario e dall'altro la possibilita di organizzare il lavoro con estrema precisione in modo da
limitare al minimo possibile 1 fermi macchina delle linee lavorative e poter dare tempi certi di consegna
al cliente.

Tramite questo applicativo ¢ possibile monitare non solo le lavorazioni in corso ma anche di
programmare con un certo anticipo quelle future in modo da sfruttare al meglio le risorse umane e
tecnologiche e poter gia nella compilazione del preventivo del cliente sapere il giorno e I'ora in cui la
lavorazione verra eseguita, potendo quindi avere una stima dei costi e della data di ultimazione.

La parte sviluppata da me in questo progetto riguarda la gestione del magazzino dei fornitori di materie
prime necessarie per le fasi lavorative. L'impostazione che ¢ stata data al progetto ruota ovviamente
attorno al concetto di articolo e alle operazioni che ¢ possibile effettuare su di esso: definizione,
cancellazione, modifica nonché le attivita di carico e scarico.

1.2 Organizzazione della tesi

La tesi ¢ organizzata come segue. Nel capitolo 2 verranno illustrati i concetti introduttivi alla base di
dati utilizzata (Microsoft SQL-Server 7.0) , al linguaggio di programmazione (Microsoft Visual Basic
6.0) e alle Stored Procedure. Il capitolo 3 illustra la progettazione e realizzazione della base di dati
oggetto di questo lavoro di tesi e I'impementazione vera e propria del programma applicativo.

Capitolo 2

Concetti di base

In questo capitolo verranno illustrati i concetti che sono alla base di questo lavoro di tesi.

2.1 - Microsoft SQL-Server 7.1

2.1.1 Architettura

L'intero programma si avvale dell'uso di Microsoft SQL-Server 7.0 [3],[7], quindi anche per la gestione
del magazzino ¢ stata utilizzata questa specifica base di dati. Per l'interfacciamento con la base di dati
si ¢ utilizzato Microsoft ADO, tecnologia D-com che permette un dialogo ad alto livello. Vediamo piu
nel dettaglio il funzionamento di SQL-Server 7.0

master

— System Databases
model tempdb msdb

System

Y Y[

Database

Catalog Databaze Databaze Databaze
\ Catalog Catalog Catalog

r

X
- S
ERES

pubs northwind other

Catalog

[]
L Datanase J

User Databases
Figura 2.1.1: Schema di SQL-Server 7.0

Il database ¢ la struttura principale di SQL Server e fornisce I’ambiente per archiviare e controllare i
dati. Come rappresentato in Figura 2.1.1, SQL Server ha due grosse categorie di databases:

1. Databases di sistema
2. Databases utente

All’ interno dei databases di sistema SQL Server memorizza tutte le informazioni e gli oggetti necessari
al suo funzionamento.
I databases di sistema che SQL Server crea al momento dell’installazione sono quattro:

1. MASTER contiene le informazioni sul server ad alto livello

2. TEMPDB contiene le tabelle e gli oggetti temporanei

3. MODEL contiene il modello per la creazione di un database tipo

4. MSDB informazioni per il funzionamento di SQL Server Agent (Jobs, Web Assistant, ecc..)

Nei databases utente invece sono memorizzati i dati utente e gli oggetti del database che verranno
illustrati successivamente. Il numero di databases di questo tipo che ¢ possibile creare all’interno di
SQL Server ¢ 32734.

table

SOL Server

Defining ACcessing hodifiing

Tahle View Trigoer
Data Type Stored Procedures
Constraint
Default
Rule
Index

Figura 2.1.2: Oggetti del Database

In Figura 2.1.2 ¢ possibile vedere gli oggetti che sono contenuti in un database:

1. Tabelle
Memorizzano i dati che vengono inseriti nel database, sono tra loro in relazione reciproca. Sono
fatte da colonne e da righe. Una tabella puo avere fino a 1024 colonne e 8092 byte per riga.
Il numero di tabelle per database puo arrivare fino a due miliardi.

2. Tipi di dati
Definiscono i tipi di dati che possono essere inseriti nelle colonne, possono essere definiti
dall’utente.
3. Obblighi
Servono a rafforzare I’integrita del database.
4. Default
Assegna valori predefiniti ad una determinata colonna.
5. Regole
Definiscono vincoli ai dati che vengono inseriti, servono a rafforzare I’integrita del database.
6. Indici
Servono ad ottimizzare I’accesso ai dati contenuti nelle tabelle.
7. Viste
Sono tabelle generate con colonne prese da una o piu tabelle.
8. Procedure Memorizzate (Stored Procedure)
Sono set di istruzioni T-SQL, sono dei veri e propri programmi per i1 databases.
9. Trigger
Sono procedure memorizzate che si attivano in modo autonomo in base allo scatenarsi di
determinati eventi come INSERT, UPDATE, DELETE.

L’insieme degli oggetti di database che costituiscono il database prende il nome di SCHEMA. La
progettazione di tutti questi oggetti rappresenta il modello di dati.
Tutti questi oggetti possono essere creati in tre modi differenti:

1. Attraverso le procedure guidate di SQL Server 7.0 (wizard)
2. Con istruzioni SQL (CREATE TABLE, CREATE PROCCEDURE, ecc..)
3. Attraverso I’Enterprise Manager Console

SQL Server tiene traccia all’interno di ogni database degli oggetti che vengono creati, modificati o
eliminati.

Le informazioni che descrivono gli oggetti del database sono chiamate metadati.

I metadati sono organizzati in un dizionario dei dati che contiene istruzioni come CREATE o ALTER.

11 dizionario dei dati ¢ organizzato in tabelle di sistema (iniziano con il prefisso sys) che sono contenute
all’interno di ogni databases utente che viene creato all’interno di SQL Server.

Tablez 19 Items
Mame A& | Owner | Type | Create D ate
zpzallocations dbo Syztem 13198 2.00.19
zyzcolumng dbio System 13/11/98 3.00.19
syzcomments dbo Syztem 13/11/98 2.00.13
zpzdepends dbo Syztem 13198 2.00.19
syzfilegroups dbo Syztem 13/11/98 2.00.13
zypzfiles dbo Syztem 13198 2.00.19
zysfiles] dbio System 13/11/98 3.00.19
syzforeignkeys dbo Syztem 13/11/98 2.00.13
zpzfulltextcatalogs dbo Syztem 13198 2.00.19
zyzindexes dbio System 13/11/98 3.00.19
syzindeskeys dbo Syztem 13/11/98 2.00.13
zpzmembers dbo Syztem 13198 2.00.19
zyzobjects dbio System 13411498 3.00.19
yEpermissions dbo Syztem 13198 2.00.19
zysprotects dbio System 13/11/98 3.00.19
syzreferences dbo Syztem 13/11/98 2.00.13
pztypes dbo Syztem 13198 2.00.19
zYsLIEErs dbio System 13/11/98 3.00.19
UTEMTI dbo Jzer 16/05/01 10.24.24

Figura 2.1: Tabelle di un Database

Nella Figura 2.1 possiamo vedere un esempio di screenshot delle tabelle contenute in un database.

2.1.2 Sicurezza

In un database multi-utente la sicurezza ¢ importante. In SQL Server la sicurezza ¢ implementata su due
livelli:

1. alivello del server (login)
2. alivello del database (user)

La login ¢ composta da uno User ID e da una password. Per ogni login all’interno di SQL Server deve
esserci un corrispondente utente all’interno di uno specifico database. L’utente deve avere 1 privilegi
opportuni per poter compiere le varie operazioni all’interno del database.

Server login ID

Una server login valida ¢ necessaria per accedere ad SQL Server, il login account ¢ fatto di 3
componenti:

SERVER LOGIN ID (utente xxx)

SERVER PASSWORD (psw)

DEFAULT DATABASE

Esiste una login molto particolare che viene creata per default da SQL Server al momento
dell’installazione: il system administrator (sa) ¢ abilitato a creare database ed utenti, a fare backup, ecc..
insomma ad amministrare il sistema e cosi via.

Una volta creato un database il sa crea gli utenti che potranno accedere al database, assegnando i
privilegi ed i ruoli opportuni. Il creatore del database ne diventa proprietario cio¢: database owner(dbo).

Ogni oggetto nel database ha un owner.

2.1.3 Strumenti

SQL Server ¢ un prodotto molto completo e fornisce una vasta gamma di strumenti (grafici e non) utili
a monitorare, amministrare e interrogare SQL Server.
Ecco un elenco dei tool:

1. Amministrazione:
SQL Enterprise Manager
2. Interrogazione:

Utility da linea di comando isql
SQL Query Analyzer
Microsoft Query

SQL Server WWWeb Assistant
Microsoft Access

3. Monitoraggio:

SQL Performance Monitor
SQL Trace

4. Documentazione:

SQL Server Book Online
Help vari (ODBC e altro)

5. Configurazione:

Client configuration utility
Server Network utility

6. Altri:

SQL Server Service Manager

2.1.4 Connessione

Ci sono vari modi di parlare con SQL Server dall'esterno:

1. Attraverso utility client come SQL Query Analyzer
2. Altri database Microsoft: ACCESS

3. Linguaggi di programmazione: Visual Basic
4. Da Internet attraverso le pagine ASP

Attraverso uno di questi metodi ¢ possibile collegarsi ed inviare dei comandi T-SQL a SQL Server.

2.1.5 | Tipi di dato in SQL Server

In SQL-SERVER quando viene creata una tabella si deve definire in modo esatto il tipo di dati che ogni
colonna puo contenere. SQL Server permette di definire vari tipi di dati utili per immagazzinare
informazioni: caratteri, numeri, bytes, date, immagini e oltre a questo ¢ possibile definire tipi di dati
personalizzati secondo esigenze specifiche.

Ecco I'elenco e la descrizione dei tipi di dati disponibili con SQL Server 7.0:

Dati binari:

binary[(n)]
ha una lunghezza fissa e puo contenere fino ad 8000 bytes di dati binari

varbinary[(n)]
ha una lunghezza variabile e puo contenere fino ad 8000 bytes di dati binari

Dati carattere:

char[(n)]

ha una lunghezza fissa e puo contenere fino ad 8000 caratteri ANSI (cioe¢ 8000 bytes)
varchar[(n)]

ha una lunghezza variabile e puo contenere fino ad 8000 caratteri ANSI (cioe 8000 bytes)
nchar[(n)]

ha una lunghezza fissa e pud contenere fino a 4000 caratteri UNICODE (cio¢ 8000 bytes,
ricordiamo che per i caratteri UNICODE servono 2 bytes per memorizzare un carattere)
nvarchar[(n)]

ha una lunghezza variabile e pud contenere fino a 4000 caratteri UNICODE (cio¢ 8000 bytes,
ricordiamo che per i caratteri UNICODE servono 2 bytes per memorizzare un carattere)

Dati ora e data:

datetime

ammette valori compresi dal 1 gennaio 1753 al 31 dicembre 9999 (precisione al trecentesimo di
secondo), occupa uno spazio di 8 byte

smalldatetime

¢ meno preciso del precedente (precisione al minuto), ,occupa uno spazio di 4 byte

Dati monetari:

money
Contiene valori monetari da -922337203685477.5808 a 922337203685477.5807 con una
precisione al decimillesimo di unita monetaria, occupa 8 bytes di memoria

smallmoney
Contiene valori monetari da - 214748.3648 a 214748.3647 con una precisione al decimillesimo
di unita monetaria, occupa 4 bytes di memoria.

Dati numerici approssimati:

float[(n)]

Contiene numeri a virgola mobile positivi e negativi, compresi tra

2.23E-308 e 1.79E308 per i valori positivi e tra -2.23E-308 e -1.79E308 per i valori negativi,
occupa 8 bytes di memoria ed ha una precisione di 15 cifre

real

Contiene numeri a virgola mobile positivi e negativi comprese tra 1.18E-38 e 3.40E38 per i
valori positivi e tra -1.18E-38 e -3.40E38 per i valori negativi, occupa 4 bytes di memoria ed ha
una precisione di 7 cifre

Dati numerici esatti:

decimal[(p][, s])]

numeric[(p[, s])]

decimal e numeric sono sinonimi per SQL Server 7.0, possono avere valori compresi tra 10738 -
1 e - 10M38 -1. La memoria che occupano per essere immagazzinati varia a seconda della
precisione che utilizziamo per rappresentarli, da un minimo di 2 bytes a un massimo di 17 bytes

p - ¢ la precisione, che rappresenta il numero massimo di cifre decimali che possono essere
memorizzate (da entrambe le parti della virgola). Il massimo della precisione ¢ 28 cifre.

s - ¢ la scala, che rappresenta il numero massimo di cifre decimali dopo la virgola e deve essere
minore od uguale alla precisione.

Int

occupa 4 byte di memoria e memorizza 1 valori da -2147483648 a 2147483647

smallint

occupa 2 byte di memoria e memorizza i valori da -32768 a 32,767

tinyint

occupa | byte di memoria e memorizza i valori da 0 a 255

Dati speciali:

bit

tipicamente ¢ usato per rappresentare i flag, vero/false o true/false o si/no, perché puo accettare
solo due valori 0 o 1. Occupa un bit ovviamente. Le colonne che hanno un tipo dati bit non
possono avere valori nulli € non possono avere indici.

cursor

sono usati come varibili in stored procedure oppure come parametri di OUTPUT sempre in
stored proc, fanno riferimento ai cursori. Possono essere nulli e non possono essere usati con le
istruzioni CREATE TABLE.

sysname

¢ un varchar di 128 caratteri ed occupa 256 bytes, viene usato per assegnare 1 nomi ad oggetti

del database, come tabelle, procedure, trigger, indici e altro.

timestamp

occupa 8 bytes ed ¢ un contatore incrementale per colonna assegnato automaticamente da SQL-
Server.

UNIQUEIDENTIFIER (GUID)

E' un identificatore unico a livello globale di 16 byte di lunghezza chiamato anche GUID. E
generato (molto lentamente) automaticamente da SQL Server.

Dati text ed image:

I dati di questo tipo, non vengono memorizzati nelle normali pagine dati di SQL Server, ma sono
trattati in modo speciale su apposite pagine di memorizzazione.

10

text

¢ un tipo dati a lunghezza variabile, che pué memorizzare fino a 2147483647 caratteri.
ntext

come il precedente ma memorizza caratteri UNICODE, quindi fino alla meta del precedente,
cio¢ 1073741823 caratteri.

image

pud memorizzare fino a 2147483647 bytes di dati binari, ¢ solitamente usato per le immagini.

Sinonimi per i tipi di dati

Per assicurare la compatibilita con lo standard SQL-92, SQL Server puo usare 1 seguenti sinonimi per i
corrispondenti tipi di dati quando vengono usate istruzioni che fanno parte del data definition language
(DDL), come CREATE TABLE, CREATE PROCEDURE o DECLARE @nomevariable (Tabella 2.1).

Sinonimo Mappato su SQL Server 7.0
Binary varying Varbinary
char varying Varchar
character Char
character char(1)
character(n) char(n)
character varying(n) varchar(n)
Dec decimal
Double precision float
float[(n)] forn=1-7 real
float[(n)] for n = 8-15 float
Integer Int
national character(n) nchar(n)
national char(n) nchar(n)
national character varying(n) |[nvarchar(n)
national char varying(n) nvarchar(n)
national text ntext

Tabella 2.1 Mappaggio dei tipi di dato

La conversione dei tipi di dato in altri linguaggi

T-SQL non mappa 1 tipi di dati con quelli di altri linguaggi di programmazione. Nella Tabella 2.2 sono
indicate le corrispondenze tra i tipi di dati di SQL Server e quelli di Visual Basic. Questo problema ha
richiesto particolare attenzione durante la realizzazione dell'applicazione oggetto del presente lavoro di
tesi, onde evitare l'uso di tipi troppo piccoli (sia in Visual Basic che in SQL-Server 7.0) e quindi cadere
nel rischio di overflow o underflow. In particolare i1 controlli necessari nella conversione di tipo sono
stati fatti via software.

11

Convertire I VB Data Types in SQL Server Data Types

Tipi di dati in VB Tipi di dati corrispondenti in SQL
Server
Long, Integer, Byte, Boolean T-SQL Int
Double, Single T-SQL Float
Currency T-SQL Money
Date T-SQL DateTime
Stringhe fino a 255 caratteri T-SQL VarChar
Stringhe superiori a 255 caratteri T-SQL Text
Array monodimensionale fino a 255 elementi | T-SQL VarBinary
Array monodimensionale con piu di 255 T-SQL Image
elementi

Tabella 2.2 Conversione dei tipi di dato

12

2.2 - Microsoft Visual Basic 6.0

La nascita di Microsoft Visual Basic [1],[2],[7] ha comportato una rivoluzione nel mondo degli
strumenti di sviluppo per Windows, lanciando un nuovo modo di programmare, che vede per la prima
volta prevalere 1'uso del mouse nei confronti di quello della tastiera.

Tale approccio, detto visuale, si basa sull'uso di oggetti, ovvero di elementi attivi selezionabili su una
barra degli strumenti (toolbox), caratterizzati dall'essere descritti da un insieme di valori, detti proprieta
ed in grado di eseguire dei metodi, ovvero delle azioni che ne possono influenzare lo stato.

Un'ulteriore particolarita degli oggetti consiste nella capacita di generare degli eventi, a cui il
programmatore pud associare come risposta degli insiemi di istruzioni, detti procedure (ad esempio
quando viene premuto un bottone il programmatore puo associare la chiusura di una finestra).

Il linguaggio con cui esse sono scritte si basa sulle regole sintattiche previste dal BASIC, di cui
mantiene la semplicita.

Un'applicazione Visual Basic ¢ costituita da una o piu finestre, dette form, sulle quali si trovano gli
oggetti che formano l'interfaccia fra I'applicazione e l'utente. Su un form ¢ possibile inserire pressoché
qualsiasi elemento, sia che si tratti di un'immagine, di un box di testo, di una lista o di un pulsante.

2.2.1 Gli eventi

Ogni oggetto inserito all'interno di un form ha associato degli eventi, come per esempio il click del
mouse, ed ¢ possibile gestirli tramite delle routine apposite.

Volendo fare in modo che la risposta avvenga in occasione del click del mouse su di un pulsante (ad
esempio “btScrivi”) occorre selezionare nella lista degli eventi disponibili 1'evento Click. Si provoca
cosi la creazione della procedura btScrivi_Click, di cui ¢ automaticamente visualizzata l'intestazione
nella parte inferiore della finestra, seguita dalla frase End Sub, che indica la fine del blocco di codice.
Le istruzioni che devono essere eseguite in risposta all'evento vanno inserite nello spazio compreso fra
le righe generate automaticamente, avendo l'accortezza di indicare un solo comando per linea.

2.2.2 | metodi

Come si ¢ gia accennato, ogni oggetto ¢ in grado di ricevere dei comandi che possono provocare la
variazione di alcune proprieta o la generazione di eventi: 1 metodi. L'invocazione di un metodo avviene
secondo la sintassi:

<oggetto>.<metodo> [<parametro>, ... ,<parametro>|

Al nome dell'oggetto ¢ necessario far seguire, separato da un punto, quello del metodo e gli eventuali
parametri.

Ad esempio, l'aggiunta della riga

btScrivi.Move 0,0

13

nella procedura vista in precedenza, provoca l'esecuzione del metodo Move da parte dall'oggetto
btScrivi. La coppia 0, 0 rappresenta l'insieme dei parametri.

L'effetto che si ottiene consiste nello spostamento del bottone nell'angolo superiore sinistro del form,
ovvero nel punto di cui 1 parametri rappresentano le coordinate.

2.2.3 Le variabili

Anche Visual Basic, come tutti i linguaggi di programmazione, prevede 1'uso delle variabili, mediante
le quali ¢ possibile memorizzare dei valori testuali o numerici in strutture a cui il programma puo
accedere grazie a un nome assegnato loro in fase di creazione.

Una variabile ¢ detta /ocale quando ¢ definita all'interno di una procedura e la sua creazione avviene
quando si fa riferimento ad essa per la prima volta, oppure quando ¢ eseguita l'istruzione Dim, che
presenta la seguente sintassi:

Dim <nome> [As <tipo>]

in cui <nome> rappresenta il nome da assegnare alla variabile.

Esso non si sottrae alla regola valida per tutti gli identificatori, ivi compresi i nomi degli oggetti, che
impone loro di essere costituiti da delle sequenze di caratteri alfabetici o numerici privi di spazi ed
aventi per iniziali delle lettere dell'alfabeto.

E inoltre possibile, anche se non indispensabile (come sottolineato dalla presenza delle parentesi
quadre), aggiungere all'istruzione Dim un'indicazione del tipo di dato da creare. Visual Basic prevede
numerosi tipi standard di cui 1 piu utilizzati sono integer, usato per rappresentare i dati numerici interi
compresi fra -32,768 a 32,767, string, che pud contenere delle sequenze (stringhe) alfanumeriche
composte al massimo da circa 65500 caratteri, long, in grado di ospitare numeri interi compresi fra
-2,147,483,648 e 2,147,483,647, single e double, con cui ¢ possibile memorizzare numeri reali anche di
notevole entita.

Se invece ¢ omessa la dichiarazione del tipo, la variabile ¢ definita variant. Questo formato non ¢
previsto dalla maggior parte dei linguaggi di programmazione tradizionali. La sua caratteristica
fondamentale ¢ l'universalita. Una variabile variant, infatti, pud contenere dei dati aventi qualsiasi
formato. E buona norma, tuttavia, non fare largo uso di strutture di questo tipo, in quanto la loro
gestione da parte dell'interprete ¢ poco efficiente.

Una variabile locale puo anche non essere dichiarata, in questo caso la sua creazione avviene la prima
volta in cui si fa riferimento ad essa. Si pud impedire la istanziazione automatica delle variabili (per
ovvie ragioni di prevenzione di errori accidentali) premettendo la dichiarazione “option explicit”
all'inizio del codice.

Dopo I'esecuzione dell'ultima istruzione presente nella procedura in cui sono state create, le variabili
locali sono automaticamente distrutte. Per fare in modo che il loro valore sia conservato anche in
occasione delle chiamate successive, ¢ necessario dichiarare le variabili sostituendo Static alla parola
chiave Dim.

In alcuni casi, si rivela necessario fare in modo che una variabile non sia mai distrutta e sia accessibile
anche dalle altre procedure presenti in un form. In questo caso, ¢ necessario selezionare la sezione
General nella lista a discesa posta nella parte superiore sinistra della finestra contenente il codice
associato al form, la voce Declarations nella lista di destra e dichiarare la variabile per mezzo
dell'istruzione Dim.

14

Quando invece si presenta la necessita di fare in modo che una struttura sia accessibile da tutte le
procedure presenti nell'applicazione, indipendentemente dal form in cui esse si trovano, € necessario
utilizzare per la dichiarazione la parola chiave Global. Una variabile dichiarata in questo modo ¢ detta
globale. La sua dichiarazione ¢ impossibile all'interno di un form. Essa deve essere effettuata in un
modulo, ovvero in un file di testo caratterizzato dall'estensione .BAS, che ¢ aggiunto al progetto
selezionando la voce Add Module del menu Project.

2.2.4 La connesione a fonti di dati

Sfruttando ADO (ActiveX Data Object) [5],[6],[9] ¢ possibile tramite Visual Basic connettersi
direttamente ad una base di dati sfruttando le potenzialita di ADO. Buona parte della potenza e della
flessibilita di ADO deriva dal fatto che consente di connettersi a numerosi provider di dati utilizzando
lo stesso modello di programmazione, indipendentemente dalle caratteristiche specifiche di ciascun
provider.

Poiché tuttavia ciascun provider dispone di caratteristiche uniche, le modalita di interazione tra
l'applicazione e ADO variano leggermente a seconda del provider stesso. Le differenze da prendere in
considerazione sono in genere riconducibili a una delle tre seguenti categorie:

- Parametri di connessione nella proprieta ConnectionString
« Utilizzo dell'oggetto Command
- Comportamento dell'oggetto Recordset specifico del provider

2.2.5 Proprieta dinamiche specifiche dei provider

Gli insiemi detti Properties degli oggetti Connection, Command e Recordset includono proprieta
dinamiche specifiche dei diversi provider che forniscono informazioni sulle funzionalita specifiche del
provider in uso oltre alle proprieta incorporate in ADO.

Dopo avere stabilito la connessione e creato tali oggetti, ¢ possibile utilizzare il metodo Refresh
dell'insieme Properties dell'oggetto per ottenere le proprieta specifiche del provider in uso.

2.2.6 L'oggetto Connection

Un oggetto Connection rappresenta una sessione univoca con una fonte dati e nel caso di un sistema di
base di dati client/server, pud equivalere a una effettiva connessione al server. A seconda della
funzionalita supportata dal provider, ¢ possibile che alcuni metodi, insiemi o proprieta di un oggetto
Connection non siano disponibili.

Con le proprieta, gli insiemi e 1 metodi di un oggetto Connection, ¢ possibile eseguire le operazioni
seguenti:

« Configurare la connessione prima di aprirla utilizzando le proprieta ConnectionString,
ConnectionTimeout e Mode.

15

« Impostare la proprieta CursorLocation per richiamare il Client Cursor Provider, che supporta gli
aggiornamenti in modalita batch.

- Impostare la base di dati predefinito per la connessione utilizzando la proprieta DefaultDatabase.

« Impostare il livello di isolamento per le transazioni aperte sulla connessione utilizzando la proprieta
IsolationLevel.

 Specificare un provider OLE DB con la proprieta Provider.

- Stabilire, quindi interrompere, la connessione fisica alla fonte dati utilizzando i metodi Open e
Close.

+ Eseguire un comando sulla connessione utilizzando il metodo Execute e configurare l'esecuzione
utilizzando la proprieta CommandTimeout.

- Gestire le transazioni sulla connessione aperta, comprese quelle nidificate se supportate dal provider,
utilizzando 1 metodi BeginTrans, CommitTrans e RollbackTrans e la proprieta Attributes.

- Esaminare gli errori restituiti dalla fonte dati utilizzando l'insieme Errors.

+ Leggere la versione dall'implementazione ADO corrente utilizzando la proprieta Version.

« Ottenere le informazioni sullo schema di una base di dati utilizzando il metodo OpenSchema.

2.2.7 L'oggetto Recordset

Un oggetto Recordset rappresenta il set di record ottenuto da una tabella di base o dai risultati di un
comando eseguito e viene utilizzato per manipolare i dati forniti da un provider. Per ricavare dei dati
da una base di dati tramite un Recordset ¢ necessario specificare una stringa SQL da associare al
recordset stesso: il risultato della interrogazione verra memorizzato nel Recordset. Quando si utilizza
ADO, 1 dati vengono manipolati quasi esclusivamente tramite Recordset. Tutti i Recordset vengono
creati utilizzando record (righe) e campi (colonne) e a seconda della funzionalita supportata dal
provider, ¢ possibile che alcuni metodi o proprieta non siano disponibili.

In ADO sono disponibili quattro diversi tipi di cursore:

+ Cursore dinamico: consente di visualizzare aggiunte, modifiche ed eliminazioni eseguite da altri
utenti e di effettuare tutti i tipi di movimento. Consente inoltre di inserire segnalibri se supportati dal
provider.

« Cursore direzionale: si comporta come un cursore dinamico ad eccezione del fatto che non consente
di visualizzare record aggiunti da altri utenti e di accedere a record cancellati da altri utenti. I dati
modificati da altri utenti saranno ancora visibili. Supporta segnalibri e consente di effettuare tutti i
tipi di movimento.

« Cursore statico: fornisce una copia statica di un set di record da utilizzare per trovare dati o generare
relazioni; consente di inserire segnalibri e di effettuare tutti i tipi di movimento tramite il Recordset.
Aggiunte, modifiche o eliminazioni eseguite da altri utenti non saranno visibili. E l'unico tipo di
cursore disponibile quando si apre un oggetto Recordset del client (ADOR)

- Cursore a scorrimento in avanti: si comporta esattamente come un cursore dinamico ad eccezione
del fatto che consente di scorrere i record solo in avanti. In questo modo si migliorano le prestazioni
quando ¢ necessario effettuare un solo passaggio all'interno di un Recordset.

Alcuni provider non supportano tutti i tipi di cursore e se non viene specificato in base
all'impostazione predefinita verra aperto un cursore a scorrimento in avanti.

16

Quando utilizzati con alcuni provider quali ODBC Provider for OLE DB unitamente a SQL-Server, ¢
possibile creare oggetti Recordset indipendentemente da un oggetto Connection definito in precedenza
passando una stringa di connessione con il metodo Open. ADO crea sempre un oggetto Connection,
senza tuttavia assegnarlo a una variabile oggetto. Se vengono tuttavia aperti piu oggetti Recordset
tramite la stessa connessione, ¢ necessario creare e aprire esplicitamente un oggetto Connection, in
modo da assegnarlo a una variabile oggetto. Se non si utilizza questa variabile di oggetto quando si
aprono gli oggetti Recordset, ADO creera un nuovo oggetto Connection per ciascun nuovo Recordset,
anche se si passa la stessa stringa di connessione.

Quando si apre un Recordset, il record corrente corrisponde al primo record se disponibile, mentre le
proprieta BOF e EOF vengono impostate a False. Se non sono disponibili record, 1'impostazione per
BOF e EOF ¢ True.

E possibile utilizzare i metodi MoveFirst, MoveLast, MoveNext, MovePrevious e Move, e le proprieta
AbsolutePosition, AbsolutePage e Filter per riposizionare il record corrente, purché il provider supporti
la relativa funzionalita. Gli oggetti Recordset a scorrimento in avanti supportano solo il metodo
MoveNext. Quando si utilizzano 1 metodi Move per visualizzare ciascun record o enumerare il
Recordset, ¢ possibile utilizzare le proprieta BOF ed EOF per verificare se ¢ stato superato 1'inizio o la
fine del Recordset.

Gli oggetti Recordset supportano l'aggiornamento immediato e 1'aggiornamento in modalita batch:
nell'aggiornamento immediato tutte le modifiche apportate ai dati vengono immediatamente scritte
sulla fonte dati di livello inferiore quando si richiama il metodo Update. E inoltre possibile passare
serie di valori come parametri con i metodi AddNew e Update e aggiornare contemporaneamente vari
campi di un record.

Se il provider supporta l'aggiornamento in modalita batch, ¢ possibile memorizzare nella cache le
modifiche apportate a piu record, quindi trasmetterle con un sola chiamata alla base di dati con il
metodo UpdateBatch. Si tratta di una procedura valida per le modifiche apportate con i metodi
AddNew, Update e Delete. Dopo aver richiamato il metodo UpdateBatch, ¢ possibile utilizzare la
proprieta Status per verificare e risolvere eventuali conflitti di dati.

17

2.3 Le stored procedure

Le stored procedure [7][10] rappresentano il “cuore” della programmazione Transact SQL. Presenti fin
dalle prime versioni di SQL Server sono gruppi di istruzioni SQL compattati in un modulo e
memorizzati nella cache per un successivo utilizzo.

Racchiudere il codice SQL all’interno di procedure memorizzate porta due grossi vantaggi rispetto ai
batch di codice SQL tradizionale:

1. Aumento nella velocita di esecuzione del codice SQL e quindi delle performance generali delle
applicazioni.

2. Aumento della leggibilita e della portabilita del codice e quindi della scalabilita delle
applicazioni.

Le procedure possono essere create sia per uso permanente che temporaneo ed inoltre possono essere
avviate in modo automatico quando viene avviato SQL Server.

La quantita di istruzione SQL che pud accogliere una procedura ¢ enorme: 128 MB,mentre il numero
massimo di parametri che ¢ possibile assegnare ad una procedura ¢ 2100.

Le procedure vengono salvate su una tabella di sistema della base di dati sul quale si sta lavorando dal
nome syscomments.

Sql Server stesso possiede una serie di procedure dette di sistema che vengono generate al momento
della sua installazione e sono necessarie ad eseguire una serie fondamentale di compiti che vanno dalla
creazione dei databases alla loro manutenzione (utenti, permessi, repliche, backup, restore, ecc...).

2.3.1 Come creare le procedure

L’istruzione DDL per la creazione di stored procedure ¢ CREATE PROCEDURE, ecco la sintassi
completa:

CREATE PROC [EDURE] nome procedura [; numero]
[{ @parametro tipo di dati }
[VARYING] [= default] [OUTPUT]

Il ,...n]

[WITH
{ RECOMPILE | ENCRYPTION | RECOMPILE , ENCRYPTION }]

[FOR REPLICATION]

AS istruzione sgql [...n]

E’ sufficiente eseguire in un batch I’istruzione CREATE PROCEDURE dichiarando i parametri di
input ed output necessari ed infine aggiungere le istruzioni Transact SQL costituenti il corpo vero e
proprio della procedura. Ad esempio, creiamo la procedura p_sel autore nel database pubs, che servira
per recuperare un autore dalla tabella authors in funzioni del proprio ID di identificazione:

18

Use pubs
Go /*inizio del batch SQL per la creazione della procedura*/

CREATE PROCEDURE dbo.p sel autore (@au id VARCHAR(11l) = ‘') AS
SELECT
au_lname + ' ' + au fname AS Nome
FROM
authors
WHERE
au_ id = @au id

Go /*fine del batch SQL per la creazione della procedura*/

Da notare che I’istruzione CREATE PROCEDURE deve essere la prima del batch altrimenti la
creazione della procedura fallira.

Ad esempio il codice sottostante ¢ errato perché prima dell’istruzione CREATE PROCEDURE c'¢ una
SELECT (il batch ¢ il codice SQL compreso tra la parola Go e la successiva)

Use pubs
Go /*inizio del batch SQL per la creazione della procedura*/
SELECT
au Iname + ' ' + au fname AS Nome
FROM
authors
VEs La presenza di questa SELECT fa fallire la creazione
dell’ oggetto*/

CREATE PROCEDURE dbo.p sel autore (@au id VARCHAR(11l) = ‘') AS
SELECT
au_lname + ' ' + au fname AS Nome
FROM
authors
WHERE
au_ id = @au id

Go /*fine del batch SQL per la creazione della procedura*/

Nella dichiarazione dei parametri di input di una procedura ¢ possibile assegnare per questi dei valori di
default, questo ¢ molto utile nella costruzione di procedure efficaci perché i valori che arriveranno dai
parametri saranno sempre coerenti e consistenti con la logica della routine.

Se un parametro non possiede un valore di default al momento dell’esecuzione verra chiesto di passare
un valore specifico per quel parametro altrimenti SQL Server segnalera un errore.

2.3.2 Le opzioni

Nella sintassi dell’istruzione CREATE PROCEDURE esistono alcune opzioni che ¢ possibile
specificare durante la creazione di una procedura RECOMPILE ¢ ENCRYPTION.
La prima obbliga la ricompilazione della procedura ogni qualvolta viene eseguita, sostanzialmente la

19

procedura non viene messa in cache e non viene creato un piano di esecuzione ad hoc richiamabile.
La seconda permette di criptare il contenuto della procedura cosicché nessuno all’infuori del
proprietario del codice sorgente avra accesso al suo contenuto.

2.3.3 Nidificare procedure

Le procedure possono richiamare ed essere richiamate da altre procedure e cosi via fino ad un livello di
nidificazione pari a 32. Questo limite ¢ imposto da SQL Server per impedire errori di overflow.
1 contrario una stored procedure pud chiamare altre centinaia di stored procedure al suo interno.

2.3.4 Eseguire una procedura

Ci sono diversi modi per chiamare una procedura, per la precedente possiamo usare due differenti
sintassi in funzione del modo con sui vengono passati i parametri (se esistono ovviamente), una
implicita ed una esplicita. Per essere piu chiari creiamo una nuova procedura piu complessa della
precedente con piu parametri di input:

Use pubs
Go
CREATE PROCEDURE dbo.p sel autore2 (@state VARCHAR (2) ,
@contract BIT) AS
SELECT
au lname + ' ' + au fname AS Nome
FROM
authors
WHERE
state = @state
AND
contract = @Qcontract
RETURN (0)
Go
/*

Nella modalita implicita il nome del parametro di input non viene specificato ed ¢ passato
correttamente in funzione del suo ordine di chiamata nella procedura:

*/

EXEC dbo.p sel autore2 'CA', 'l' —-- Questa chiamata e corretta
-- Ma se invertiamo 1 parametri 1’esecuzione & errata

EXEC dbo.p sel autore2 'CA', '1'

/*

20

Nella modalita esplicita invece il nome del parametro di input viene specificato e passato senza che
I’ordine di chiamata nella procedura sia importante:

*/

—- Questa chiamata e corretta

EXEC dbo.p sel autore2 @state = 'Ca', @contract = '1'

—— Ed ora invertiamo i1 parametri per vedere cosa succede
EXEC dbo.p sel autore2 @contract = 'l', @state = 'CA'

N

--Ma anche questa chiamata e corretta, pur invertendo 1’ordine di
chiamata

-—questo perché abbiamo specificato i nomi dei parametri @contrat e
@state in

—-—-in abbinamento ai valori appropriati

La parola chiave RETURN provoca 1’uscita incondizionata dalla procedura, in qualunque posizione
essa si trovi nel codice: il parser quando la incontra esce e non esegue le istruzioni sottostanti.

Oltre ad uscire ¢ possibile abbinare un codice di uscita (rappresentato da un numero intero) che
aggiunge maggiori informazioni alla nostra istruzione RETURN.

Di default il valore di RETURN ¢ 0, se invece si verifica un errore il valore sara diverso da 0
ovviamente. E' possibile assegnare dei valori all’istruzione RETURN, ad esempio RETURN(-100) esce
dalla procedura con codice di errore uguale a —100.

DECLARE (@ret INTEGER
EXEC @ret = dbo.p sel autore2 (@contract = 'l', @state='CA'
PRINT (@ret

Stampera 0, se invece nelle parentesi tonde mettiamo il valore RETURN(-100), I’istruzione PRINT
stampera —100.

2.3.5 Alterare ed eliminare le procedure

Ci sono altre due istruzioni importanti per lavorare con le procedure ALTER e DROP PROCEDURE.
La prima permette di modificare il contenuto di una procedura una volta che ¢ stata create, per esempio
cambiando il contenuto della procedura p _sel autori, facciamo in modo di recuperare i primi 10 autori
in ordine decrescente:

Use pubs
Go /*inizio del batch SQL per la creazione della procedura*/
ALTER PROCEDURE dbo.p sel autore (@au_id VARCHAR(11l) = ‘') AS
SELECT TOP 10
au_lname + ' ' + au fname AS Nome
FROM
authors
WHERE

21

au id = @au id
ORDER BY au_ fname DESC
Go /*fine del batch SQL per la creazione della procedura*/

Se invece si vuole eliminare la procedura sara sufficiente usare 1’istruzione DROP PROCEDURE.

Use pubs
Go /*la procedura € eliminata*/
DROP PROCEDURE dbo.p sel autore

Alcune note:

1 - Le variabili in Transact SQL sono locali ed il loro contesto ¢ circostanziato alla sessione in cui
vengono create.

2 - Per aumentare 1’efficacia di esecuzione di una procedura nella sua esecuzione ¢ bene specificare il
nome del proprietario dell’oggetto procedura (tipicamente dbo) ed anche la base di dati nel quale ¢
contenuta

2.3.6 Alcune utili procedure di sistema

Esistono alcune procedure di sistema che possono aiutare a gestire il lavoro con le stored procedure:
sp_help: permette di avere informazioni sulla procedura (uso, tipo di parametri, ecc...)

uso: EXEC sp_help nome_della_procedura

sp_helptext: permette di vedere il testo di una stored procedure

uso: EXEC sp_helptext nome della_procedura

sp_depends: per scoprire le dipendenze da altri oggetti

uso: EXEC sp_depends nome_della_procedura

Sp_rename: per rinominare una procedura

uso: EXEC sp_rename vecchio nome_della_procedura, nuovo_nome_della_procedura

22

Capitolo 3

Il programma S.P.P.

3.1 - S.P.P. :Supervisione Processo Produttivo

Il lavoro svolto appartiene a un progetto piu ampio relativo alla gestione amministrativa di una societa
di Galvanica

Lo scopo principale per il quale si ¢ reso necessario progettare ed implementare un sistema di tipo
Enterprise per l'amministrazione di un ambiente aziendale, si riscontra nella volonta di apportare
I’innovazioni tecnologica al fine produttivo.

Nel dettaglio 1 vantaggi offerti dal progetto:

1.

23

Centralizzazione delle informazioni: tutte le documentazioni vengono registrate nell’unica base di
dati aziendale, che permette quindi la distribuzione controllata, I’archiviazione protetta e la
trasportabilita di tutti 1 dati delle varie attivita.

Elevamento qualitativo di produzione: le rilevazioni semi automatiche permettono ai controllori di
processo di verificare, in tempo reale, lo stato di avanzamento lavoro, garantendo un accurato esame
dei singoli prodotti ed il relativo miglioramento qualitativo.

. Aumento delle prestazioni amministrative: gli utenti dei settori amministrativi, vengono isolati dalle

problematiche di reperibilita delle informazioni (perché automatizzate) riducendo quindi i tempi di
mancata produzione.

Miglioramento delle intercomunicazioni: tramite svariati sistemi di comunicazione ma soprattutto
grazie ad una pianificata sequenza lavorativa multiutente, ogni settore di attivita ¢ messo in
condizione di operare (nell’area di validita del proprio settore) con la consapevolezza degli
interventi apportati da altri operatori per lo stesso prodotto.

. Supervisione gerarchica delle attivita: tramite funzionalita di impostazioni avanzate, I’organigramma

aziendale ¢ implementato nel sistema stesso; la struttura gerarchica trova riscontro quindi nei
permessi attribuiti ai singoli utenti. In generale, la struttura ascendente dei livelli, rappresenta la
capacita di ottenere o meno, informazioni sempre piu riepilogative e confidenziali.

Applicazione regole aziendali: data la natura centralizzata dell’architettura degli applicativi, si
ottiene la possibilita di impostare gli standard per le regole aziendali con la garanzia che verranno
rispettati.

3.2 - La base di dati

In questa sezione verranno prima descritti i problemi che si sono riscontrati durante la realizzazione
della base di dati e come questi sono stati risolti. Successivamente verranno descritte le tabelle che
compongono la base di dati

3.2.1 | tipi di dati

La corretta scelta dei tipi di dato da utilizzare (soprattutto il loro dimensionamento) ¢ un problema da
sempre presente in informatica, in cui si deve raggiungere un compromesso tra spreco di memoria e tipi
di dato troppo piccoli. Se da un lato vi ¢ infatti la necessita di ottimizzare lo spazio in memoria,
evitando quindi lo spreco di risorse, dall'altro vi ¢ il rischio di avere variabili sottodimensionate con il
pericolo di incorrerre nell'overflow o nell'underflow.

Con il termine overflow ci si riferisce al fenomeno di traboccamento di un numero dallo spazio di
memoria che questo ha a disposizione. In pratica ’overflow ¢ un errore che si presenta quando si tenta
di scrivere un numero piu grande del massimo consentito dalla configurazione di n bit.Per quanto si
estenda il numero di bit, o si cerchi di affiancare piu byte, il fenomeno dell’overflow ¢ ineliminabile
poiché la dimensione della memoria ¢ comunque finita.

11 fenomeno dell’underflow ¢ inverso al problema dell’overflow: I'underflow infatti si verifica quando
si cerca di memorizzare un numero piu piccolo del valore minimo consentito dalla configurazione.
Underflow e overflow sono problemi complementari, entrambi infatti sono causati dal cercare di
memorizzare un dato troppo grande per lo spazio disponibile.

Lavorando con un databese (SQL-Server 7.0 nel caso specifico) sorge un altro problema legato alla
scelta dei tipi di dato, ovvero come convertire 1 tipi di dato supportati dalla base di dati con quelli
supportati da Visual Basic, in particolare per 1 tipi di dato numerici che spesso non sono compatibili.
Puo infatti capitare che si abbiano delle incongruenze tra la precisione di memorizzazione di SQL-
Server 7.0 e quella di Visual Basic.

In particolare in Visual Basic non ¢ possibile dichiarare esplicitamente il numero di cifre decimali di
un numero a virgola fissa, potendo usare solo il tipo di dato Currency, che offre solo 4 cifre decimali,
risultando quindi inadeguato in molte situazioni, soprattutto per contenere i tipi di dato che SQL-Server
7.0 ¢ in grado di memorizzare. E' possibile in verita utilizzare un'altra soluzione particolare in Visual
Basic, ovvero il tipo di dati Decimal. Questo tipo di dato, pur essendo a virgola fissa, contiene numeri
decimali divisi per una potenza di 10. Se il fattore di divisione € zero (numeri senza decimali)
I'intervallo valido € +/-79.228.162.514.264.337.593.543.950.335. Per 1 numeri con 28 decimali,
l'intervallo € +/-7,9228162514264337593543950335. Il numero diverso da zero piu piccolo che puo
essere rappresentato ¢ quindi 0,0000000000000000000000000001.

Uno degli inconvenienti derivati dall'uso del tipo Decimal ¢ che non ¢ possibile dichiarare
esplicitamente un dato come Decimal, ma ¢ necessario usare il tipo Variant (che pud contenenere ogni
tipo di dato) e convertirlo a Decimal. Nonostante questo inconveniente si ¢ preferito, in certi casi, il suo
utilizzo rispetto al Currency od a un numero a virgola mobile.

In prima analisi 1'adozione di numeri a virgola mobile era sembrata la migliore soluzione, dovendo
rappresentare delle grandezze fisiche (peso, peso specifico, volume,...) in cui quindi gli errori

24

eventualmente introdotti dalle operazioni aritmetiche vengono ridotti. Tuttavia essendo valori
strettamente legati ad un listino prezzi (a seconda degli articoli di magazzino il prezzo ¢ legato al peso
o al volume del contenitore) si ¢ preferito ricorrere a numeri a virgola fissa con il maggior numero di
decimali disponibile e controllare via codice che i numeri immessi dall'utente nel corso della
definizione di un articolo non eccedessero 1 limiti imposti. In questo modo ¢ stato possibile evitare il
problema dell'overflow e dell'underflow, nonostante si sia dovuto ricorrere a un tipo di dato di
dimensioni maggiori, causando quindi uno spreco di memoria.

3.2.2 | Contenitori

Uno dei principali problemi che si incontrano quando si devono maneggiare dimensioni fisiche (peso,
peso specifico, volume), oltre a quanto gia detto riguardo a overflow e underflow, ¢ che 1 valori rilevati
risultano spesso imprecisi gia alla sorgente. Quando si devono quindi registrare questi numeri ci si
trova nella condizione di dover introdurre delle approsimazioni. Questo fenomeno ¢ particolarmente di
difficile gestione nel momento in cui serve fare delle operazioni sui dati rilevati, causando una somma
degli errori invece che una loro diminuizione (secondo la teoria di propagazione dell’errore).

Ancora una volta, essendo valori legati a dei prezzi, si ¢ cercato di avere la maggior precisione
possibile, anche se questo ha comportato delle complicazioni nella gestione dei dati numerici.

Oltre alla gia citata soluzione di adottare dei numeri con maggiore precisione ¢ stato introdotto il
concetto di contenitore, ovvero ogni operazione effettuata su una grandezza fisica di un articolo viene
effettuata solo attraverso multipli interi di una quantita nota. Per semplificare 1’operazione nella
definizione di un articolo viene richiesto all’utente di indicare con quale contenitore il prodotto si
presenta, specificando che in futuro potra essere movimentato solo una quantita multipla di quel
contenitore.

Questo tipo di gestione deriva anche da una specifica di programma: 1’esigenza era fare in modo che a
magazzino non restassero confezioni di prodotto usate a meta, con il rischio di un loro deterioramento e
spreco, cosi facendo invece 1’utente ¢ obbligato a richiedere lotti interi di prodotto e a risponderne per
tutta la quantita a lui fornita. Un’altro vantaggio ¢ dato dalla possibilita di associare piul contenitori per
ogni singolo articolo, con relativa fotografia, dimensione e corrispondeza tra contenitore e prodotto. In
questo modo ¢ possibile avere a magazzino uno stesso articolo ma, a seconda del contenitore con cui ¢
stato venduto, poterlo movimentare in maniera differente. L.’adozione dell’uso dei contenitori risolve in
parte il problema degli errori introdotti dall’uso di grandezze fisiche: ogni operazione risulta multipla di
un contenitore prefissato e quindi gli errori possibili, dovuti a operazioni sulle quantita, vengono
diminuiti. Un’altra considerazione pratica consiste nell’avere un modello che si avvicina il piu possibile
allo stato reale di un magazzino, con dei prodotti stoccati nei loro contenitori effettivi e con la relativa
fotografia, in modo da rendere il lavoro dell’utente piu agevole.

Nella strutturazione della gestione del magazzino si ¢ cercato di virtualizzare le operazioni che
’operatore comunemente svolge, modellando il programma sulla reale organizzazione del magazzino.
In quest’ottica sono state introdotte, oltre all'uso dei contenitori, le zone di stoccaggio, ovvero ogni
materiale deve essere movimentato da o verso una specifica zona, che rispecchia I’effettiva
strutturazione del magazzino, suddiviso appunto in zone distinte.

Ogni prodotto quindi non ¢ piu un semplice articolo con associata la sua giacenza, ma risulta un
struttura piu complessa, caratterizzata da uno o piu contenitori e dalle zone in cui ¢ stoccato. In questo
modo puo essere che uno stesso articolo sia registrato in zone differenti con contenitori differenti, cosi

25

come effettivamente accade nel magazzino reale.

Nonostante per 1’utente ogni movimento da e verso il magazzino viene effettuato con multipli del
contenitore definito (quindi numeri interi che rappresentano quanti contenitori sono stati movimentati),
in pratica nella base di dati vengono memorrizate le quantita fisiche di prodotto (espresse quindi in kg o
litr1). Da qui I’esigenza dell’utilizzo di variabili numeriche appropriate, sia lato applicazione che base
di dati. Questa apparente incongruenza, ovvero la differenza tra cosa viene effettivamente memorizzato
(quantita fisiche in virgola fissa con cifre decimali) e quanto richiesto all’utente (quantita multiple di un
contenitore) ¢ in veritd solo apparente, in quanto essendo definiti pitu contenitori per ogni singolo
prodotto ¢ necessario memorizzare I’effetiva quantita movimentata e non il multiplo del contenitore,
onde evitare incongruenze.

C’¢ inoltre da aggiungere che essendo questo il rifacimento di un programma su una base dati gia
esistente, si & preferito non stravolgere troppo la base dati precedente e dove possibile adattare
I’applicativo alla base dati e non viceversa dal momento che questa risulta in condivisione con altri
programmi.

La strutturazione dei dati prevede lI'uso di un unica base di dati per tutto l'applicativo, anche se ¢
prevista l'adozione di una base di dati separata per il solo magazzino in un prossimo futuro.

Si ¢ voluto memorizzare esplicitamente la giacenza totale e la giacenza per zona, invece di ricorrere al
suo calcolo ogni volta facendo la somma dei movimenti per evitare di far lavorare inutilimente la base
di dati, calcolando valori che facilmente si possono memorizzare. Questa scelta ¢ stata dettata
dall'elevato numero di richieste dei valori di giacenza di ogni articolo, dal momento che dopo ogni
movimento da o verso il magazzino l'utente ha la necessita di conoscere la situazione della giacenza, sia
totale che per zona. Nonostante le query di somma di valori siano estremamente ottimizzate, in
previsione di un notevole sviluppo del numero di movimenti registrati si ¢ preferito non appesantire
ulteriormente il lavoro della base di dati, inserendo appunto due tabelle al posto di una.

3.2.3 Indici di revisione

Ogni articolo presente a magazzino pud essere soggetto a vari cambiamenti, composizione chimica,
aspetto esteriore o anche semplicemente di prezzo.

L'utente potrebbe aver la necessita di fare in modo che le modifiche apportate ad un articolo abbiano
effetto solo per 1 prossimi movimenti registrati, ovvero che lo storico gia memorizzato non venga
modificato (caso tipico ¢ quello di un prezzo appunto, nei vecchi carichi deve continuare a essere
registrato il vecchio prezzo, mentre per i prossimo deve essere usato il prezzo aggiornato). La soluzione
piu semplice ¢ quella di eliminare la tabella degli articoli, riportando cio¢ di volta in volta le
caratteristiche dell'articolo nelle varie tabelle interessate, ad esempio il prezzo nella tabella dei carichi
in modo che ad ogni carico ¢ possibile modificarne il valore a seconda del mercato. Questa gestione
tuttavia porta ad alcuni problemi e incongruenze. Innanzitutto in questo modo si ha la replicazione dei
dati, in molti casi inutilimente, se nel caso del prezzo questo potrebbe, almeno teoricamente, cambiare
ogni volta, difficilmente il peso specifico, I'unita di misura cambieranno in continuazione e quindi le
dimensioni della base di dati crescerebbero senza motivo. Inoltre come suddividere le varie
informazioni? Le caratteristiche tecniche sono necessarie sia nel caso di carico che di scarico di un
articolo, servirebbe quindi riportarle in entrambe le tabelle.

Una soluzione potrebbe essere quella di gestire 1 vari campi dell'articolo in modi differenti, si avrebbe

26

cosi ad esempio il prezzo memorizzato nella tabella di carico mentre i dati anagrafici nella tabella degli
articoli, che verrebbe cosi mantenuta. Le difficolta di questa gestione riguardano il come suddividere 1
campi tra le varie tabelle e inoltre non risolvono il problema della possibilita di avere uno storico delle
modifiche effettuate all'articolo: se ad esempio il prezzo venisse chiesto ogni volta(presentando magari
il prezzo dell'ultimo carico come riferimento) non si avrebbe nessun controllo sui carichi precendenti,
viceversa se si modificasse un dato anagrafico presente nella tabella articoli questo interesserebbe
indistintamente i vecchi e 1 nuovi movimenti.

Una soluzione intermedia, adottata dal programma, ¢ l'introduzione degli indici di revisione,
meccanismo semplice e assolutamente trasparente all'utente che dovra infatti semplicemente indicare se
le modifiche effettuate sull'articolo dovranno aver effetto solo per i prossimi movimenti oppure
interessare tutto lo storico. Nel secondo caso, il piu semplice da gestire, verra semplicemente aggiornata
la tabella degli articoli in modo che le modifiche verranno visualizzate (e quindi applicate) in ogni parte
del programma: quando l'utente chiedera i dettagli di un articolo caricato, qualunque sia la data di
carico, vedra queste modifiche. E' questo il caso tipico di modifiche alla descrizione dell'articolo,
magari sostituita con una piu completa, oppure delle schede di sicurezza, aggiornate con i nuovi
parametri di legge.

Le modifiche dei prezzi ovviamente non possono seguire questa logica, un vecchio carico infatti dovra
avere il prezzo coerente con il listino della data del movimento e non quello attuale. Puo quindi servire
che le modifiche abbiano effetto solo per i prossimi movimenti, e non solo per il prezzo. In questo caso,
in modo del tutto trasparente all'utente, vengono introdotti gli indici di revisione, ovvero l'utente vedra 1
vecchi movimenti con 1 dati prima delle modifiche, mentre i movimenti futuri presenteranno le
modifiche apportate.

Per fare questo occorre aggiungere due campi alla tabella articoli, ovvero l'indice di revisione e un bit
che indica la revisione corrente. Al momento del salvataggio delle modiche viene creata una copia
dell'articolo, con un suo ID di tabella differente da quello dell'articolo originario, 1l'indice di revisione
viene impostato sull'lD dell'articolo originario e il bit di revisione corrente viene impostato a 1.
Nell'articolo originario viceversa viene impostato a 0 il bit relativo alla revisione corrente.

Cosi facendo nei vecchi movimenti, essendo linkati alla tabella articoli tramite I'ID di tabella,
continuera a essere visualizzato il vecchio articolo, mentre in quelli futuri verra usato quello appena
modificato(ovvero nei prossimi movimenti verra usato I'ID dell'articolo con indice di revisione a 1).

In questo modo ¢ possibile creare piu revisioni, in cui quella corrente risulta quella con il bit di

revisione a 1 mentre tutte le altre avranno questo bit a 0. In verita il bit di revisione non ¢ necessario, in
quanto bastererebbe controllare la data di modifica dell'articolo (che viene comunque memorizzata dal
programma) che indica lo storico di tutte le modifiche: l'ultima sara quella con data piu recente.
Ciononostante 1'uso di un bit aggiuntivo risulta molto piu comodo, snellisce le query aggiungendo un
overhead davvero piccolo, dovuto ad un solo bit.
Con l'adozione degli indici di revisione in caso di modifica si ricorre sempre alla creazione di un nuovo
articolo, causando nel caso di lievi modifiche un certo overhead non trascurabile. Ci0 € particolarmente
vero per il prezzo che effettivamente ¢ il dato che piu di ogni altro ¢ sottoposto a cambiamenti, anche
frequenti. Per ovviare a questo inconveniente sono allo studio soluzioni, non ancora implementate, per
poter salvare separatamente il prezzo. Probabile soluzione sara 'adozione di una nuova tabella, linkata
a quella degli articoli per la memorizzazione di tutte le fluttuazioni di prezzo dei prodotti,
accompagnata dalla possibilita per l'utente di visualizzare tutti i cambiamenti nel corso del tempo.
Probabilmente verra introdotto il concetto di preventivo associato non solo al prodotto ma anche alla
quantita acquistata, in quanto ovviamente il prezzo puo variare anche in maniera consistente a seconda
dell'entita dell'ordine.

27

3.3 — Tabelle utilizzate

Fornitori

iti S0L Server Enterprise Manager -

J[ﬁ] Consale Window Help

HE % =@ T

Column Mame | Datatype |Lenath |Precision |Scale |allow Muls | DeFault Value | Tdentity | Identity Seed |Identity Increment|Is Rowauid |

F_|FOCodice nvarchar 7 0 o | | || ||
__|FORagSoc rivarchar 150 0 i : : :
| FOTelefo nvarchar z0 u] a z : :
__ |FOFax rivarchar 20]] z : :
| FOBHCodPag kinyint 1 3 1] z : :
FOAHCoBaFR rvarchar 7 0 0] [] []

FOBHCodBan rivarchar 7 0 i Z : :

Figura 3.1 Tabella "Fornitori"

La tabella fornitori (Figura 3.1) contiene l'elenco di tutti i fornitori di materie prime dell'azienda.
L'elenco dei fornitori risulta ricavato da una base di dati esterna in cui il codice associato ¢ composto da
7 caratteri numerici, preceduti se necessario da degli “0” (es il codice “23” deve essere memorizzato
come “0000023”). E' stata quindi una scelta obbligata quella di utilizzare il tipo di dato nvarchar per il
campo “FOCodice” che rappresenta appunto il codice associato al fornitore. Questa tabella risulta
quindi l'unica a non avere un identificativo di riga gestito automaticamente dalla base di dati: anche se
il campo”FOCodice” ¢ chiave primaria non ¢ autoincrementato automaticamente dalla base di dati ad
ogni nuovo inserimento. Il campo “FORagSoc” rappresenta la ragione sociale del fornitore ed ¢
costituito da un campo nvarchar di 150 caratteri. Questi due campi sono gli unici obbligatori per
I'utente quando intende inserire un nuovo fornitore. Questa tabella risulta collegata alla tabella
ArticoliFornitori tramite il campo “FOCodice”: ogni articolo ha associato un solo fornitore mentre a
ciascun fornitore possono essere associati piu articoli.

Non sono previsti indici di revisione per questa tabella: ogni modifica ha effetto retroattivo.

28

Articoli Fornitori

Ji'ﬁ] SQL Server Enterprise Manager - [2:Design Table "ArticoliFornitori‘]

Jnﬁ] Console Window Help

HEe S 2Ry eSS
Column Mame |Datatype |Length |Precision | Scale | allow Mulls |Default Walue |Identity [Identity Seed |Identity Increment | Is Rowdsuid |

| [aFd int 4 10 0 [] 2] |1 1 []
| [AFIdForn revarchar 7 i 0 : : :
| |AFCodice rvarchar 40 1] [] : :
| |AFDescri rivarchar 150 i] 0 L | : :
| [AFURiMis nvatchar 5] 0 : : :
|| aFunimisz rrearchar 5 0 0 [] [] []
| |aFscaMin real 4 74 0 || [] []
|| aFPreuni real 4 24 o] [] []
| |aFresspe real 4 24 0] [] []
| |aFDatLis datetime 8 0 0] i [
| |aFidee int 4 10 0] [] []
| |aFcorae real 4 24 0]]]
| |aFcorsez real 4 74 o] [] []
| |aFimgpth rrearchar oo o 0 [] [] []
|| AF1dMatn int 4 10 0 [] fid i
|| aFrduser int 4 10 o] [] []
| |AFRevcor bit 1 0 0] fid i
| |aFrevd int 4 10 0] [] []
| |aFrevoat datetime 8 0 0] [] []
| |aF1dcont int 4 10 0 || [] []
| |aFidam int 4 10 0] [] []
| |aFrdcar int 4 10 0] i [
| |aFdzsar int 4 10 0] [] []
| |aFLstrey bit 1 0 0] [] []

Figura 3.2 Tabella ArticoliFornitori

In Figura 3.2 possiamo vedere la tabella relativa agli articoli associati a un fornitore. Il campo
“AFIdForn” risulta associato al campo “FOCodice” e rappresenta il codice del fornitore del prodotto
specifico. Rispetto alla tabella Fornitori la tabella ArticoliFornitori possiede il campo”AFId” che oltre
ad essere chiave primaria risulta autoincrementato e gestito autonomamente dalla base di dati (¢ cio¢
una identitd).

Da notare inoltre il campo “AFRevCor” che indica se il record rappresenta la revisione corrente
dall'articolo e il campo “AFRevld” che rappresenta l'indice di revisione dell'articolo: se ¢ uguale a
“AFId” significa che questo record non ha subito revisioni ed ¢ l'unico relativo a quell'articolo. Tutte le
revisioni di un articolo hanno in comune il campo “AFRevCor” che rappresenta l'indice (“AFId”) della
prima revisione dell'articolo, ovvero quella piu vecchia.

29

Articoli Fornitori Caricati

ii S0L Server Enterprise Manager - [2:Design Table "ArticoliFornitoriCaricati']

JBEU Console Window Help

WE % =By (S

Colurnn Mame | Datatype |Lenath |Precision [Scale [allow Mulls [Defaul alue |Tdentity |Identity Seed |Identity Increment|Ts RowGuid |
2 |aFcid int 4 10 0 []] 1 1 3]
__|aFCdDTF int 4 10 0 [] [] 2]
__|aFcidarFo int 4 10 0] [] [|
__|aFcar real 4 24) /] [] 2]
AFCPreLot real 4 24 o /] []]
__|aFcPreuni real 4 74] [v] [] 3]
__|aFcoatcar datetime B o 0] [] [|
__|aFciduser int 4 10 0 /] []]
AFCIHCPA int 4 10] [v] [] []
| aFCIdzsaF int 4 10] [v] [] []
AFCIdRevAF int 4 10 0] [| | |

Figura 3.3: Tabella ArticoliFornitoriCaricati

In Figura 3.3 possiamo vedere la tabella in cui sono registrati i movimenti di carico di uno specifico
articolo. Tramite il campo “AFCIdArFo” ¢ possibile risalire all'articolo movimentato mentre il campo
“AFCIdRevAF” indica 1'ld della revisione corrente di quello specifico articolo (in questo modo ¢
possibile risalire direttamente alla attuale revisione dell'articolo movimentato senza ulteriori
operazioni).

Questa tabella risulta collegata alla tabella relativa ai contenitori tramite il campo “AFCIdCPA”, in
modo da avere indicato con quale specifico contenitore ¢ stato movimentato l'articolo. II campo
“AFCIdZSAF” ¢ collegato invece alla tabella relativa alle zone di stoccaggio, in modo da poter risalire
alla zona specifica in cui il prodotto ¢ stato immagazzinato. Il campo “AFCQt” rappresenta la quantita
caricata nella specifico movimento, espressa in unita di misura principale: sebbene infatti ogni
movimento registrato debba essere un multiplo di un contenitore risulterebbe troppo oneroso
memorizzare il valore intero dei contenitori. Ogni operazione sulle quantitd dovrebbe infatti tenere
conto anche del contenitore utilizzato.

30

Articolo Fornitori Scaricati

'{iii S0L Server Enterprise Manager - [2:Design Table 'ArticoliFornitoriscaricati’]

JB& Console Window Help

e (S B2y | TS
Colurnn Mame |Datat3-'pe |Length|Precision |5cale |.0.Ilnw Mulls |Default Yalue |Identity|Identity Seed |I|:Ientity Increment| Is RowGuid |

& |aFsiD int 4 10 0]] 1 1 []
AFSIdMaga int 4 10 0 (] [] []
AFSIdarFo int 4 10 0 [] [] []

| |aFsar real 4 24 0 [] [] []
AFSData datetime 5 0 0 [] [] []
ARSI asc int 4 10 0] [] []
AFSIdMaEs int 4 10 0] [] []
AFSIdLser int 4 10 0] [] []
AFSCodDIP warchar w0 0] [] []
AFSIACPA int 4 10 0] [] []
AFSIdZSAF int 4 10 0] [] []
AFSDataReq datetime 5 0 0] [] []
AFSIdRevaF int 4 10 0] [] []

Figura 3.4: ArticoliFornitoriScaricati

La tabella in Figura 3.4 risulta speculare alla tabella relativa ai carichi, mentre in quella precedente sono
infatti registrati i movimenti di carico a magazzino in questa vengono memorizzati quelli di scarico.
Come per l'altra tabella abbiamo quindi i campi “AFSIdZSAF” e “AFSIdCPA” che indicano
rispettivamente 1'd alla tabella della zona dalla quale ¢ stato scaricato il materiale e 1'ld alla tabella dei
contenitori per indicare il contenitore utilizzato per I'operazione.

Da notare il campo “AFSIdCaSc” che indica la causale dello scarico, ovvero la destinazione del
materiale scaricato (es: in quale linea il prodotto verra utilizzato).

Allineamento Articoli Fornitori

:m S0L Server Enterprise Manager - [Z:Design Table "AllineamentoGiacenzaAF']

Jkgfn Console wWindow Help

= R e

8 & 5§

Column Mame | Datatype |Lenath [Precision [Scale [allow Nulls [Defaulk Yalue |Identity |Identity Seed [Identity Increment|1s RowGuid |
#_|aceFid int 4 10 0 []] 1 1]
_|acaFidrevar real 4 2 0 [] [] []
__|aGAFDate datetime 8 0 0] [] []

_ | mEAFCausale rvarchar 150 0 0 Z : :
__|acarqra real 4 24 0 [] [] []
| AGAFIdUser Liryink 1 3] z : :
| |AsaF1dzsar int 4 10 0] [] []
__|maAFIdcra int 4 10 a] | [|

Figura 3.5: Tabella AllineamentoArticoliFornitori

La Figura 3.5 rappresenta la tabella degli allineamenti del magazzino, che come indicato piu avanti,

31

sono operazioni del tutto eccezzionali eseguite nel caso di errori nella normale registrazione delle
operazioni da e verso il magazzino. Risulta quindi organizzata come le tabelle di carico e scarico, dove
oltre alla quantita movimentata ¢ necessario indicare anche la zona e il contenitore utilizzato per
effettuare il movimento.

Articoli Fornitori Spostati

'ﬁh SQL Server Enterprise Manager - [2:Design Table "ArticolifFornitoriSpostati’]

“kﬁ Console Window Help

CEIEIEEREAE T T
Colurnn Marme |Datatype |Length |F‘recisi0n |Scale |.C\||0w Mulls |DeFauIt Yalue |Identity |Identity Seed |Identity Increment| Is RowGuid |

'1_}’_ AFSPId int 4 10 0 | | v |1 1 | |
AFSPG decimal g 18 & [] [] []
AFSPIdZonaProy int 4 10] : : :
AFSPIdZonalest int 4 10 1] : : :
AFSPIdUser int 4 10 0 [/] [] [|
AFSPData datetime 8 0 0 [/] [] []
AFSPIHCPA int 4 10 0 [] [] []
AFSPIdRevAF ink 4 10 0 [v] [] []

Figura 3.6: Tabella ArticoliFornitoriSpostati

In Figura 3.6 ¢ indicata la tabella che contiene 1 record relativi agli spostamenti di articoli da una zona
all'altra del magazzino, per una sua eventuale riorganizzazzione. E' linkata alla tabella ArticoliFornitori
tramite il campo “AFSPIdRevAF”: il magazzino ¢ infatti organizzato in base agli Id di revisione, non
viene fatta differenza tra una revisione e l'altra nel conteggio della giacenza.

Come per tutti i movimenti relativi al magazzino ¢ necessario indicare (tramite il campo
“AFSPIdCPA”) quale contenitore si vuole spostare. E' ovviamente necessario indicare la zona da cui
viene prelevata la quantitd e la zona di destinazione, tramite i campi “AFSPIdZonaProv” e
“AFSPIdZonaDest”.

Categorie Articoli Fornitori

':m S0L Server Enterprise Manager - [Z2:Design Table 'CategorieAF']

J% Console Window Help

HE (% s2 ¢ e &

Columnn Mame |Datatv|:ue |Length |Precisiu:un |5|:ale |.°.II|:uw Mulls |Default Yalue |Identit‘f |Identity Seed |Identity Increment|Is RowiGuid |
| |caFd int 4 10 i =]] 1 1
CAFDescri rvarchar 50 0 0 =]
|| CAFMome resarchar 50] 1] D D
CAFRevCor bit 1 o 0 (1] |
| L] [[
1 1 1

Figura 3.7: Tabella CategorieArticoliFornitori

I prodotti del magazzino risultano suddivisi in categorie di appartenenza, in base a ben precisi standard
chimici e di utilizzo del materiale stesso (Figura 3.7). Ogni articolo della tabella ArticoliFornitori
risulta collegato a questa tabella tramite il campo “CAFId”: ogni prodotto appartiene a una e una sola

32

categoria. Il campo “CAFRevCor” indica se quella specifica categoria ¢ ancora in uso: se il bit ¢ a “0”
significa che l'utente non puo usare quella specifica categoria per 1 nuovi prodotti, ma resta associata
soltanto a quelli gia in uso.

Destinazione Impiego Personale

iii SOL Server Enterprise Manager - [2:Design Table 'DestinazionelmpiegoPersonale’]

J% Console Window Help

He (% sBR|f &5 E

Calurnn Mame |Datatyps |Length | Precision [Scale [allow Mulls [Default walue |Identity [1dentity Seed |Identity Increment]Is RovwGuid |
®_|DIPFlag mrvarchar 5]] [] []
| |DIPDescri rivarchar 50 D D D
. |DIPOpeRic rivarchar 50]] []]
__|orrLineaLay hit 1 0 0]] []
DIPScaMag bt 1 0 0 (] [] []
DIFScalinea it 1 0 0 [i []]
[M1 &

Figura 3.8: Tabella DestinazionelmpiegoPersonale

Ogni volta che l'utente registra una operazione di scarico deve essere indicata la destinazione
dell'articolo, ovvero dove verra fisicamente utilizzato il prodotto. Questa tabella (Figura 3.8) contiene
tutte le possibili destinazioni di un prodotto e risulta in comune con un'altra sezione del programma,
quella relativa alla registrazione degli orari di lavoro dei dipendenti: per principio infatti un prodotto
puo essere utilizzato unicamente dove vi possa essere un operatore, da qui la possibilita di avere una
tabella in comune, in sola consultazione in entrambi i casi. Vi sono poi alcuni bit di supporto che
specificano meglio il tipo di destinazione (“DIPLinealav”, “DIPScaMag”) che indicano
rispettivamente se ¢ una linea di lavorazione (la maggior parte delle destinazioni), se ¢ una destinazione
che puo essere usata solo per lo scarico del magazzino e non come impiego del personale.
“DIPScalinea” ¢ invece un campo utilizzato per la registrazione degli orari di lavoro.

Prossimo sviluppo sara la divisione della tabella in due tabelle distinte, una per la destinazione del
materiale e l'altra per quella degli operatori: fin'ora ¢ stata utilizzata una sola tabella per
retrocompatibilita.

Contenitori Per Articoli

iii SOL Server Enterprise Manager - [2:Design Table 'ContenitoriPerArticoli’]

Jnﬁn Console wWindow Help

HE (% Be ¢ a3

Columnn Marme |Datatype |Length |Precisi0n |Scale |.ﬁ.||0w Mulls |DeFault Yalue |Identitv |Identity Seed |Identity Increment| Is RowGuid |
_ |crand ink 4 10 o [] W] 1 1 []
__|cPaldrevaF int 4 10] [] [] []
__|cratdaear int 4 10] [] [] 2]
__|cracarae decimal 9 1a & [] [] []
__|cPacoraez decimal 9 16 3 [wv] iy [] []
| CPAImgPth rivarchar 50 1]] z {nully : :

CPAREVCar bit 1 0 0 [] i [] []

Figura 3.9: Tabella ContenitoriPerArticoli

33

Ad ogni articolo risulta associato uno o piu contenitori che devono essere specificati al momento della
registrazione di un movimento da e verso il magazzino. Ogni operazione deve essere espressa in
multipli di contenitori presenti nella tabella in Figura 3.9.

Il campo “CPAIdRevAF” indica 1'id di revisione dell'articolo a cui il contenitore ¢ associato: ad ogni
contenitore ¢ associato uno e un solo articolo mentre a un articolo possono essere associati piu
contenitori. Il campo “CPAIdAEAF” ¢ collegato alla tabella AspettoEsterioreAF e indica la tipologia di
contenitore: se € un cassetta metallica, un fusto, un sacco, etc.

Tramite il campo “CPACodAE” viene memorizzata la corrispondenza tra I'unita di misura principale e
il contenitore stesso, corrispondenza che viene utilizzata per registrare le quantita movimentate.

Se l'articolo possiede anche una seconda unita di misura (come per esempio alcuni liquidi che vengono
venduti a peso) viene registrata anche la corrispondenza con quest'ultima.

E' possibile inoltre associare una immagine al contenitore (“CPAImgPth”), una fotografia
generalmente, che aiuta gli operatori nella registrazione. E' un percorso relativo a un cartella condivisa
sul server, il cui path viene passato all'avvio del programma (in caso di spostamento non serve quindi
modificare la tabella “ContenitoriPerArticoli”)

Documenti Trasporto Fornitori

'{iii SQL Server Enterprise Manager - [2:Design Table *DocumentiTrasportoFornitori']

J"ﬁ Console Window Help

FEETEERE R

Column Mame |Datatype |Length | Precision | Scale |allow Mulls |Defaulk Yalue |Identity | Identity Seed |Identity Increment|Is RowGuid |
% |DTFId int 4 10 0 [] L] 1 1
| |DTFCodFor rivarchar 7 0 0 D |:|
| |DTFCodice rivarchar 50]] D |:| D
| |DTFData datetime 8]] L[] []
DTFIdUser int 4 10]] []
1 1 1

Figura 3.10: Tabella DocumentiTrasportoFornitori

Ogni operazione di carico a magazzino deve riportare il riferimento al documento di trasporto relativo
(Figura 3.10). In questa tabella ¢ indicato il codice relativo al fornitore (“DTFCodFor”) collegato alla
tabella Fornitori, la data di registrazione (“DTFData”) 1'ld dell'utente (“DTFIdUser”) e il codice
associato all' Documento di Trasporto (“DTFCodice”).

34

Giacenza Articoli Fornitori

Tm SQL Server Enterprise Manager - [2:Design Table 'GiacenzaArticoliFornitori®]

J"Eﬂ Console \Window Help

B & a2 g8

Column Marme | patatype [Length [Precision |Scale [allow Mulls [Default value [1dentivy |1dentity Seed [1dentity Increment|Ts RowGuid |
_|=aFqr real 4 24 0 [v] []
GAFPreLini real 4 24 0 []
__|=AFDatiop datetime &] 0]]
7 |cAFIdRevaF int 4 10 0] [] []
L] L] L]
[[M

Figura 3.11: Tabella GiacenzaArticoliFornitori

In Figura 3.11 ¢ rappresentata la tabella della giacenza totale di ogni articolo (giacenza = carichi —
scarichi + allineamenti) indipendentemente dalla zona specifica di stoccaggio e dal contenitore. E'
indicata la quantita, espressa in unita di misura principale (“GAFQt”) e 1'ld di revisione dell'articolo a
cui si riferisce. Questa tabella viene aggiornata ogni volta che vengono effettuti dei movimenti da e
verso il magazzino.

Giacenza per Zona Articoli Fornitori

:m SOL Server Enterprise Manager - [Z:Design Table 'GiacenzaZoneAF']
J Bﬁ Consale Window Help

HEe |% B v a5
Colurnn Mame |Datatype [Length | Precision | Scale [allow Mulls |Default Walue [Tdentity [Identity Seed [Identity Increment|Is RowaGuid |

[® |szaFId int 4 10 0 | | FE 1 | |

| |GzAFIdzsar int 4 10 0 [] [] []

| |szaFge decimal 9 13 & [] [] []

| |czaFidrevar int 4 10] [] [] []
GZAFTDCPA int 4 10 0 [] [] []
SZAFDAlIop datetime g 0 0 [] [] []

Figura 3.12: Tabella GiacenzaZoneAF

La tabella GiacenzaZoneAF (Figura 3.12) rappresenta la giacenza di ogni prodotto in ogni singola zona
del magazzino e per un particolare contenitore. In una zona quindi uno stesso prodotto puo essere
stoccato con contenitori differenti e in zone differenti puo essere registrato con lo stesso contenitore. La
somma di tutte le giacenze nelle varie zone e con i vari contenitori ¢ ovviamente uguale alla giacenza
totale. Il campo “GZAFQt” rappresenta la quantita stoccata espressa in unita di misura principale,
“GZAFIdZSAF” 1'ld della zona in cui ¢ presente fisicamente il prodotto mentre il campo
“GZAFIdCPA” il contenitore utilizzato.

Da notare il campo “GZAFDaUlOp” che indica I'ultimo aggiornamento della tabella: incrociato con le
date di registrazione delle operazioni di carico e scarico ¢ possibile controllare eventuali problemi.

35

Aspetto Esteriore

'{iii SQL Server Enterprise Manager - [2:Design Table ‘AspettoEsterioreAF']
|_J "ﬁ Console Window Help

FEETEEREE

Colurnn Marme |Datatype |Length |Precisi0n |Scale |.0.IIUW Mulls |DeFauIt Yalue |Identity |Identity Seed |Identity Increment| Is RowiGuid |
| [aEId int 4 10 o L]
| |AEDesiri rivarchar 200 |0 o |:| |:|
|| AETsIne hit 1]] [] []]
AEMome nvarchar 50 1]] [] []
[L] L] L]
L] L] L]

FT'gura 3.13: Tabella AspettoEsterioreAF

Ogni contenitore associato ad un articolo si presenta imballato in un certo involucro, che puo essere una
scatola di cartone, un sacco, una cassetta metallica o altro (Figura 3.13). L'involucro esterno rappresenta
semplicemente una descrizione esterna del prodotto, e serve all'utente per identificare il prodotto
fornendo una descrizione piu dettagliata dello stesso.

Scheda Tecnica e Scheda di Sicurezza

Tﬂl SQL Server Enterprise Manager - [2:Design Table "ArticoliFornitoriSchedeT5']
J [%J Console Window Help

HE Gy 2R Y MO S &

Column Mame |Datatype |Lenath [Precision |Scale [Allow Mulls |Default Yalue [Identity [Tdentity Seed [Identity Increment|Is Rowiyid |
L |5TsIdRevAF ink 4 10 0 |_|
STSTecnica beset 16 0 i
STSSicurezza ket 16 0] [] []
i L] L] []
=1 =1 =1

Figura 3.14: Tabella ArticoliFornitoriSchedeTS

Ad ogni articolo sono associate due schede: una di sicurezza e una tecnica (Figura 3.14) che
rappresentano rispettivamente le caratteristiche intrinseche del prodotto e le operazioni da svolgere in
caso di incidente. Non essendoci la possibilita di definire uno schema preciso da compilare a cura
dell'utente si ¢ preferito fornire all'utente la possibilita di creare un Rich Text Format da inserire
all'interno della tabella. Il formato RTF ¢ infatti supportato nativamente da SQL-Server e permette una
certa liberta di impaginazione (consente anche l'inserimento di alcune tipologie di immagini)
nonostante occupi uno spazio non indifferente. Dal momento che entrambe le schede sono raramente
richieste in consultazione da parte dell'utente si ¢ preferito memorizzarle su una tabella a parte e
visualizzarle all'utente solo su esplicita domanda: in questo modo vengono snellite la maggior parte
delle query relative alla anagrafica, che generalmente non richiedono la visualizzazione delle schede,
mentre vengono visualizzate su richiesta senza un eccessivo overhead.

36

Zone stoccaggio

';'m S0L Server Enterprise Manager - [Z:Design Table "ZoneStoccaggioAF']

Jkﬁ] Console window Help

B S R f e E

Colurnn Marne |Dataty|:ue |Length |Precisi0n |Scale |.0.Ilow Nulls |Default Yalue |Identit\; |Identity Seed |Identit\; Increment|Is RoweGuid |
__|z=1d int 4 10 0] 2 1
Z5Descri rrearchar 50 0]
ZSMaome rivarchar 50 0] D D
S| L] L] [
1 [([

Figura 3.15: Tabella ZoneStoccaggioAF

Il magazzino risulta suddiviso in zone di stoccaggio (Figura 3.15) e ogni operazione di carico scarico €
allineamento ¢ relativa a una particolare zona e a un particolare contenitore associato all'articolo stesso.

37

3.4 — Funzioni: Analisi Applicativo

L'applicativo sviluppato, facendo parte di una applicazione piu ampia, si avvale dell'uso di DLL e
eseguibili esterni per svolgere alcune funzioni generiche.

In particolare devono essere menzionati 1'eseguibile SPPCentralService che attraverso Dcom viene
lanciato, dal client sul server, e permette l'autenticazione diretta sul database e la DLL
SPPGenericFunction che contiene funzioni generiche di manipolazione di stringhe e di valori numerici.
Per la gestione degli accessi al server e quindi per distribuire la stringa di connessione ai vari client ¢
stato creato l'eseguibile SPPCentralService, che eseguito sul server gestisce gli accessi dei singoli utenti
alla base di dati (Figura 3.16). Quando l'utente esegue il programma SPP questo richiede una login,
composta da nome utente e password, che vengono passati a SPPCentralService, che verifica
consultando la base di dati se 1'utente puo accedere all'uso del programma (e quindi alla base dati). In
caso di risposta affermativa viene ritornata al client una stringa di connesssione tramite la quale pud
connettersi alla base di dati.

Il primo utente che lancia SPPCentralService ne causa la reale creazione che poi migrera sul server,
ogni utente seccessivo invece creera si il processo sulla propria macchina ma se € gia presente una
istanza del processo sul server verra sfruttata quella senza inutili duplicazioni.

—

Database SPPCentralService

SPP

Figura 3.16 Architettura di S.P.P.

38

L'interfaccia utente per la gestione del magazzino ¢ composta da 9 form principali, ovvero maschere
tramite cui l'utente puo interagire con la base dati (Figura 3.17).

L'idea di fondo ¢ quella di isolare il piu possibile la base dati all'utente, formattando i dati in modo da
presentarli nel modo piu semplice e comprensibile, indipendententemente dall'implementazione
effettiva.

=P
(Tlacenza Articoli Clarico
(" Scarico Fornitort ™ IMagazzine ™
Elenco Articolo Definizione
IMovimenti Fornitore he DoT
SCarico Allineamento » Clarico <
Articolo (nacenza Articolo

Figura 3.17:Flusso di gestione del Magazzino

Facendo parte di un programma piu generale ¢ presente un menu comune tramite il quale € possibile
accedere a tutte le sezioni del programma, dopo essersi autenticati (Figura 3.18).

¥ LOGIM x|

Irnrnettere il proprio nome utente e passwiord

|| nome utente | |

Passwaord | annulla

Figura 3.18: Login

39

in Figura 3.19 ¢ visibile il menu tramite il quale si puo scegliere quali funzionalita usare

ltente corrente
| EDOARDO | Logot |

EGRETERIA

FFICIO TECHICD

INEE E PERSOMNALE

AGATTIM INTERMI

COMTO LAYORD

MATERIE PRIME

Scheda articali

Carico magazzing

Ziacenze e scarico magazzino
MATERIALE D RICAMBIC

Scheda articoli

Carico magazzino

Giacenze e scarico magazzing
WESTIARID

Scheda articali

Carico magazzing

Giacenze e scarico Magazzing
GESTIONE TABELLE

SY'STEM ADKMIM

Fine laworo

(- ['_.

I+1...[+]
[ey u)

Figura 3.19 Menu iniziale

Dopo aver selezionato la parte concernente il magazzino ¢ possibile effettuare le seguenti operazioni

40

Creazione di un nuovo articolo, relativo a un fornitore precedentemente selezionato. I campi
obbligatori sono il codice articolo (generalmente fornito dal fornitore), I’unita di misura, il peso
specifico e il prezzo. Non obbligatori sono la descrizione, la fotografia, la composizione del
materiale(ovvero se polvere, solido o liquido) la categoria di appartenenza (acido, base...). E’
necessario definire almeno un contenitore da associare all’articolo prima di poterlo
movimentare(vd. punti successivi)

Per ogni articolo ¢ possibile associare una scheda di sicurezza (come comportarsi in caso di
incidenti) e una scheda tecnica descrittiva del prodotto.

Modifica di un articolo: tutti 1 campi sono modificabili se non ¢ stato movimentato 1’articolo,
altrimenti 1’unita di misura e il peso specifico non sono modificabili

Creazione di un contenitore. Ad ogni articolo deve essere associato almeno un contenitore per
poterlo movimentare. I dati obbligatori relativi al contenitore sono l'aspetto esteriore (ovvero il
tipo di contenitore, se una cassetta, un fusto o altro) e la capacita del contenitore rispetto alla
unita di misura principale. Facoltativa ¢ la fotografia del contenitore.

41

Operazioni di carico: deve essere specificato l'articolo da caricare, la zona in cui effettuare il
carico, il contenitore usato, la quantita e il Documento di Trasporto.

Operazione di scarico, deve essere indicato l'articolo, il contenitore e la zona di provenienza, la
destinazione di impiego (ovvero in quale linea lavorativa verra utilizzato) e la quantita.
Operazione di allineamento: potrebbe capitare che alcune operazioni non siano state registrate
per dimenticanza o omissione e quindi in via del tutto eccezionale per poter far coincidere la
giacenza reale presente a magazzino con quella registrata I'utente deve poter avere la possibilita
di allineare una quantita, ovvero introdurre un movimento che aggiunge o sottrae quantita alla
giacenza.

3.4.2 Visualizzazzione Articoli Fornitoril

<5.P.P.> Scheda articoli fornitori x|
DEXx|ao
Fornitore
Codice Ragione sociale
| | Yisualizza + |
—Articoli

Codice arficolo : |~:: codice articolo =

Descrizione ; 123456789 123456789 1223456789 I
1234567589 123456729 123456789
1234567589 123456789 123456789

peso specifico : = peso =

Scorta minima @ < Scorta =

Prezzo Unitario : < Prezzo € =
Unita di misura : = Unita di misura =

-Irnrnagine niot dispoitile-

Data listing © < Data » EEEEEEENSNEEEEEEEENEEEN]

Giacenza . « Glacenza = l“ 15 ﬂdi g

Figura 3.20: Visualizzazione Articoli Fornitori

Funzionalita del form

Per poter effetuare dei movimenti da e verso il magazzino l'utente deve poter visionare gli articoli
associati a ciascun fornitore, poterli modificare, eliminare e aggiungere (Figura 3.20).

La prima operazione che quindi si aspetta di dover effettuare ¢ l'indicazione del fornitore a cui sono
associati i prodotti desiderati. La selezione del fornitore pud avvenire tramite l'indicazione del codice
associato oppure tramite l'indicazione della Ragione Sociale (scegliendo da un elenco premendo [F9]).
Dopo aver selezionato un fornitore all'utente viene presentata la scheda del primo articolo e tramite due
appositi pulsanti puo scorrere tutte le schede degli articoli. Tramite la barra delle funzioni in alto (e
anche tramite alcune shortcut da tastiera) l'utente puo aggiungere, modificare o eliminare un articolo,
oppure allinearne la giacenza. Queste funzionalita (eccezzion fatta per I'eliminazione) prevedono
l'apertura di un altro form per completare le operazioni.

Gestione delle funzioni
Progettando la gestione della scelta del fornitore si ¢ dovuto tener conto di una duplice esigenza
dell'utente: se da un lato ¢ molto probabile che conosca il codice del fornitore a cui vuole fare

riferimento (fornitori abituali) e quindi voglia poterlo selezionare inserendo un semplice codice che
conosce a memoria, dall'altro € possibile che per molti fornitori non ricordi il codice associato e voglia

42

quindi scorrere un elenco da cui selezionarlo.

Da subito ¢ stata scartata la presentazione all'utente di un elenco completo, caricato all'apertura del
form e visualizzato in una griglia, da cui poter selezionare il record interessato. Questa soluzione infatti
offrirebbe una visualizzazzione pesante dal punto di vista grafico, soprattutto se 1'utente conoscesse gia
il codice del fornitore. Sarebbe inoltre poco usabile, essendo 1'elenco abbastanza lungo, dovendo quindi
scorrere diverse pagine prima di posizionarsi sul fornitore desiderato. Servirebbe quindi una funzione di
ricerca, annullando quindi la necessita di avere 1'elenco completo.

La soluzione che ¢ stata adottata ¢ quindi, come si puo vedere, intermedia, ovvero l'utente ha la
possibilita di indicare direttamente il codice del fornitore nell'apposita casella oppure di effettuare una
ricerca tramite la casella di testo “Ragione Sociale”. In questo caso infatti se viene inserito del testo e
viene battuto [INVIO] viene selezionato il primo fornitore la cui ragione sociale contiene le lettere
inserite, mentre se viene premuto [F9] viene aperta una finestra con tutti i fornitori che contengono la
stringa indicata. In questo modo I'elenco completo dei fornitori € si accessibile all'utente (immettendo
una stringa vuota nella casella di ricerca vengono ritornati tutti i fornitori) ma solo su richiesta esplicita,
alleggerendo l'interfaccia.

Dovendo offrire questa duplice scelta si ¢ preferito scaricare all'apertura del form la ragione sociale e il
codice di tutti i fornitori su un Recordset lato client disconnesso, su cui poi ¢ possibile effettuare
ricerche e posizionamenti senza particolari problemi o ritardi. In questo modo infatti a fronte di una
certa lentezza all'apertura dovuto al lavoro della base di dati e soprattutto della rete, ogni successiva
ricerca risulta estremamente veloce, lavorando in locale, e senza un sovraccarico ulteriore della base di
dati.

L'uso previsto di questo form infatti ¢ la selezione di numerosi articoli appartenenti a diversi fornitori,
alcuni dei quali conosciuti, altri no. Effettuare quindi ad ogni richiesta dell'utente una query specifica
alla base di dati risulterebbe eccessivo e soprattutto ridondante, con infatti la possibilita di rieffettuare
una stessa ricerca a breve distanza. Si ¢ quindi cercato di migliorare il caso pessimo (worst case),
ovvero la situazione in cui l'utente richiede ripetutamente delle ricerche con stringhe differenti.

Questa scelta, che potrebbe sembrare troppo prudente, si ¢ in verita resa necessaria dato il differente
uso che gli utente fanno del programma: alcuni utenti conoscono a memoria il codice del fornitore
cercato mentre altri ricordano solo parte della ragione sociale e necessitano quindi di continue e ripetute
ricerche.

Per poter effettuare delle ricerche all'interno dei record del Recordset dei fornitori serve controllare
attentamente la stringa di ricerca immessa, onde evitare problemi con la base di dati. E' necessario
rimuovere gli eventuali spazi introdotti all'inizio o alla fine della stringa e sostituire il carattere Ascii
(39)' e Ascii(34)" in Ascii(96), per non causare problemi con la stringa SQL di ricerca.

E' stata creata un funzione apposita per effettuare queste operazioni di controllo sulle stringhe ed ¢
stata inserita in una DDL (SPPExtension) assieme ad altre funzioni di uso comune in modo da evitare
la replica del codice e da avere un maggiore controllo sulle funzioni di uso generico, per facilitare il
debug e un possibile aggiornamento, nonché avere la certezza che il programma esegua azioni simili in
modo standardizzato.

Dopo aver scelto il fornitore tramite il tasto “visualizza” vengono mostrati all'utente gli articoli relativi.
Dovendo visualizzare tutti gli articoli associati a un fornitore e non sapendo a priori il numero di
articoli associati, si ¢ preferito ricorrere a una visualizzazione per schede, ovvero all'utente viene
presentato il primo articolo associato e poi tramite dei bottoni puod scorrere l'intero elenco oppure
ricercare, tramite l'apposita casella il codice ricercato.

43

Come gia per i fornitori si ¢ preferito scaricare su un Recordset lato client tutti gli articoli relativi a uno
specifico fornitore, per evitare ancora una volta un eccessivo lavoro della rete e della base di dati in
caso di continue ricerche. Uno dei fattori negativi dovuti a questa gestione ¢ che se 1'utente richiede gli
articoli di un fornitore “A”, poi gli articoli di un fornitore “B” e successivamente di nuovo gli articoli
del fornitore “A” questi vengono riscaricati interamente dalla base di dati, causando un inutile
overhead. Tuttavia questa situazione ¢ statisticamente molto improbabile, difficilmente 1'utente ha la
necessita di ritornare su un fornitore appena visionato. Nota positiva di questa gestione ¢ che 1 dati
relativi agli articoli sono sempre aggiornati, mentre quelli relativi ai fornitori vengono ricaricati solo
alla chiusura e riapertura del form. Le modifiche relative ai fornitori sono infatti estremamente rare,
mentre quelle relative agli articoli (seppur comunque non frequenti) sono comunque pit usuali.

3.4.3 Visualizzazzione/Creazione/Modifica Articolo Fornitore

<5.P.P.= Articolo fornitore x|
—Fornitore

Codice <Codice Arkicolo =

Ragione sociale < Ragione Sociale > |

—&cheda descrittiva articolo

Codice articala

Descrizione

Unita di misura I "’I peso specifico I Scorka minima I

Zona di Stoccaggio I j Cakeqoria I j

I
Aspetto Materiale I j Fotografia [~ I %I I
Prezzo I Data lisking I

Scheda Sicurezza | Scheda Tecnica I

Aggiungi |

o | EE0 -
Fotografia I_l EI_I Elimina | fpplica |

MuoyD | Applica ik | annulla |

Figura 3.21 Visualizzazzione/Creazione/ModiﬁEa Articoli Fornitori

44

Funzionalita del form

Questo form (Figura 3.21), che potrebbe sembrare una parziale ripetizione del form precedente, risulta
in verita molto complesso a causa delle numerose funzioni che ricopre. Si ¢ infatti preferito dedicare un
form a parte per le funzioni di creazione ¢ modifica di un articolo, quando invece si sarebbe potuto
usare, opportunamente modificato, il form precedente. Questa scelta ¢ stata dettata da varie ragioni,
anzitutto evitare modifiche non volute agli articoli (la modifica di un articolo deve essere richiesta
escplicitamente dall'utente e in caso di errore l'apertura di questo form informa immediatamente ['utente
dell'errore, riducendo quindi le modifiche accidentali).

Si ¢ voluto poi mantenere il piu separate possibile, anche graficamente, le varie funzioni del
programma, evitando quindi di avere un form che contemporaneamente permette la visualizzazione e la
immediata modifica degli articoli. Anche a livello di programmazione risulta piu semplice gestire form
separati, ognuno con la sua funzionalita, piuttosto che un unico form complesso che gestisce tutte le
possibili operazioni.

Tramite questo form in particolare 1'utente puod modificare 1 dati relativi all'anagrafica di un articolo,
nonché crearne uno nuovo. Non ¢ possibile modificare sempre ogni dato, alcune caratteristiche, come
gia detto precedentemente, sono bloccate in caso l'articolo sia gia stato movimentato (es il peso
specifico) onde evitare incongruenze. E' possibile, ma non obbligatorio, associare uno o piu contenitori,
potendone posticipare la definizione al primo movimento (spesso infatti i nuovi articoli vengono
inseriti in anagrafica prima di effettuare 1'ordine, non sapendo ancora che contenitori sono disponibili e
con i quali il prodotto verra venduto). E' possibile ovviamente eliminare anche i vecchi contenitori.
Questo form (con i bottoni relativi al salvataggio oppurtunamente nascosti) viene utilizzato anche per la
sola visualizzazione dei dati di un articolo e pud essere richiamato nel caso si vogliano conoscere i
dettagli anagrafici di uno specifico prodotto (es. dal form delle giacenza in cui viene presentato un
elenco di tutti gli articoli e la relativa giacenza, senza dare ulteriori caratteristiche di ciascun prodotto).

Gestione delle funzioni

Nonostante le funzioni gestite siano abbastaza standard per la gestione di un magazzino, i fattori che si
sono dovuti considerare rendono questo form uno dei piu complessi.

Anzitutto bisogna considerare che questo form non viene richiamato esclusivamente dalla maschera
precedente, in quanto da varie parti del programma ¢ possibile modificare o aggiungere un articolo: se
ad esempio si sta effettuando un movimento e ci si accorge che l'articolo desiderato non ¢ presente ¢
possibile aggiungerlo richiamando direttamente questo form. Per fare questo sono state usate delle
property tramite le quali ¢ possibile indicare 1'articolo che si vuole creare (viene impostato il codice
dell'articolo) potendo cosi richiamare questo form da piu parti, semplicemente impostando questo e
altri parametri (come ad esempio se l'articolo ¢ in sola visualizzazione oppure in modifica).

All'apertura del form ¢ necessario sapere se l'articolo ¢ gia stato movimentato oppure no, in modo da
poter bloccare certi campi dalla modifica, come gia ¢ stato detto. Per fare questo ¢ stata usata una
Stored Procedure, richiamata direttamente dall'oggetto connection di ADO e a cui viene passato il
codice relativo all'articolo interessato. Ovviamente non solo bisogna controllare i movimenti di questo
articolo, ma anche quelli di ogni sua revisione, onde evitare incongruenze. Bisogna quindi prima
risalire all'ld di revisione (tramite 1'apposito campo nella tabella ArticoliFornitori) e successivamente
controllare tutti 1 movimenti (tabella ArticoliFornitoriCaricati, ArticoliFornitoriScaricati,
AllinementoArticoliFornitori) di questo articolo. La ricerca dei movimenti ¢ relativamente semplice,
dal momento che nelle tabelle di carico/scarico/allinemento ¢ riportato per ogni record oltre all'ld

45

dell'articolo (quindi la specifica revisione che si sta movimentado) anche 1'ld di revisione relativo.
Questo campo (sebbene non strettamente necessario in quanto ¢ possibile risalire all'ld di revisione
tramite la tabella ArticoliFornitori) risulta utile, evitando di complicare troppo le query. Anche in
questo caso si ¢ quindi preferito introdurre un leggero overhead, nel caso specifico di spazio, per
snellire il programma e rendere le operazioni piu veloci.

Se viene ritrovato anche un solo movimento relativo a quell'ld di revisione viene bloccata la possibilita
di modificare i valori sensibili indicati, altrimenti 1'utente ¢ libero di modificare a suo piacere ogni dato.
Gestione leggermente differente viene invece usata per i contenitori. Mentre modificare il tipo di
contenitore (se sacco o cassetta ad esempio) ¢ sempre possibile, anche se sono stati effettuati dei
movimenti, non ¢ possibile modificare la corrispondenza tra contenitore e unita di misura per evitare
problemi con i vecchi movimenti che potrebbero non risultare piu multipli della quantita indicata.

In linea generale si ¢ quindi cercato di imporre all'utente la creazione di un nuovo contenitore qualora il
fornitore ne modificasse uno, cosi come avviene nel magazzino reale.

Ovviamente sia nel caso dei contenitori che degli articoli I'eliminazione effettuata dall'utente puo essere
sia effettiva che “virtuale”. Nel caso infatti che l'articolo non sia mai stato movimentato questo viene
fisicamente rimosso dalla tabella, mentre in caso contrario viene solo impostato un flag che lo indica
come non piu corrente, in modo che non venga visualizzato all'utente quando richiede I'elenco degli
articoli di un fornitore. Cosi facendo ¢ possibile visualizzarne le caratteristiche solo partendo dai form
di carico/scarico/allineamento e dal form di giacenza, come gia spiegato.

3.4.4 Visualizzazione/Creazione/Modifica Scheda Tecnica e Scheda Sicurezza

% =5.p.P.> Scheda Sicurezza, Scheda Tecnica -1O] x|
File Modifica

& |4 vB@| B 7 U|

Scheda sicurezza I Scheda tecnical

Applica Ok Annulla

Figura 3.22: Scheda Tecnica e scheda sicurezza

46

Funzionalita del form

Questo form (Figura 3.22) rappresenta una propaggine del form precedente, gestendo funzioni che
fanno parte dell'anagrafica di un articolo. Nonostante questo form dovrebbe essere parte integrante di
quello precedente, si ¢ preferito ricorrere a un nuovo form per diversi motivi. Innanzitutto queste due
schede, sebbene importanti, generalmente non sono molto richieste dall'utente nell'uso normale del
programma, ¢ quindi un loro inglobamento nel form precedente avrebbe appesantito inutilmente
l'interfaccia occupando spazio, costringendo ad un allargamento del form (sebbene infatti si possa
effettuare il resize, un form troppo grande risulta comunque di difficile gestione per l'utente).

Tramite questa maschera l'utente pud definire/modificare la scheda tecnica e la scheda di sicurezza,
associate a un articolo. Essendo campi rtf (rich text format) ¢ possibile inserire anche delle immagini e
impostare una impaginazione. Generalmente queste schede vengono inserite partendo da moduli
cartaceci scannerizzati e passati tramite OCR (optical caracter recognition) attraverso programmi
esterni: l'utente non deve fare altro che inserire il testo desiderato e salvare. Vengono forniti tutti gli
strumenti di editing necessari (copia, incolla, stampa, formattazione...) per dare massima liberta
all'utente e non vincolarlo a un modulo specifico da compilare, data la varieta di casistiche presenti e
alla facilita d'uso di un simile sistema.

Gestione delle funzioni

Nonostante per l'utente risulti molto comodo poter inserire del testo libero per la definizione di una
scheda, questo risulta abbastanza oneroso per la base di dati, che seppure supportando come tipo di dato
nativo il rich text format, si ritrova con record di dimensioni abbastanza elevate. Tuttavia avendo
utilizzato una tabella a parte si ¢ solo aumentata la dimensione della base di dati senza inficiarne le
prestazioni: nella maggior parte degli accessi le schede tecniche e di sicurezza vengono infatti
difficilmente consultate.

La possibilita di salvare direttamente in un campo di SQL-Server 7.0 in rtf ha semplificato
notevolmente il lavoro: ¢ sufficiente salvare nel campo della tabella ArticoliFornitoriSchedeTsS il testo
formattato in rtf (supportato nativamente dal controllo RichTextBox di Visual Basic) senza ulteriori
complicazioni.

47

3.4.5 Giacenza e Scarico Magazzino

“': =5.P.P.>> Glacenza e scarico magazzing = |EI|5|
— 0 E % 8
Fornitore

Z0na skoccaggio
Codice Ragione sociale O turte

Wisualizza 4+ | O zone

—Elenco articoli movimentati
lwirt

| Cateqotie

[tutte

O hcCategorie

Dettagli Giacenza articolo:

lvDettGiac

v Zome skoccagaio
v Cateqotie

Inchudi giacenza a "0 Applica

Figura 3.23: Giacenza e Scarico Magazzino

Funzionalita del form

Tramite questa maschera (Figura 3.23) l'utente puo visionare la giacenza dei prodotti stoccati a
magazzino. Come gia avveniva per la visualizzazzione dell'anagrafica degli articoli € necessario
procedere prima alla selezione del fornitore (il funzionamento ¢ analogo) avendo in piu la possibilita di
visionare tutti gli articoli di tutti 1 fornitori, con un'istantanea di tutto il contenuto del magazzino.

La sezione riguardante la scelta del fornitore ¢ volutamente simile a quello del form di visualizzazzione
dell'anagrafica, onde offrire all'utente un'interfaccia di lavoro uguale per gestire funzioni equivalenti in
modo da facilitare 1'uso dell'applicativo. Come ulteriore strumento di ricerca l'utente puo filtrare gli
articoli in base alla zona di stoccaggio e alla categoria di appartenenza, avendo quindi a disposizione
tutti gli strumenti necessari per individuare un articolo specifico o categorie ben distinte di prodotti,
cosi come avviene nella gestione reale del magazzino.

48

Nel primo controllo vengono listati tutti i prodotti che rispondono alle caratteristiche selezionate nel
filtro, con la loro giacenza totale, indipendentemente quindi dal contenitore e dalla zona di stoccaggio.
Quando un articolo viene selezionato, nel controllo immediatamente sotto vengono visualizzati 1
dettagli della giacenza, indicando le singole quantita stoccate, raggruppate per zona e per contenitore, in
modo da avere un'istantanea precisa della reale composizione del magazzino.

Tramite il bottone in basso ¢ possibile escludere dall'elenco quei prodotti che hanno una giacenza nulla
(ovvero che non sono piu presenti fisicamente nel magazzino ma che erano stati movimentati in
passato). In questo modo si evita un appesantimento visivo del programma, presentando dati che nella
maggior parte dei casi non sono utili all'utente, permettendone pero la visualizzazzione in caso questo
fosse necessario.

Dopo aver selezionato un'articolo ¢ possibile effettuare, tramite la barra degli strumenti, le operazioni di
scarico e allinemento, nonche visualizzare i dettagli anagrafici o la lista dei movimenti effettuati.

Gestione delle funzioni

La selezione del fornitore ¢ concettualmente uguale a quanto gia fatto per il form di visualizzazione,
viene quindi scaricato 1'elenco dei fornitori su un Recordset lato client e su di esso vengono effettuate le
ricerche.

La richiesta della giacenza degli articoli deve tener conto dei parametri che possono essere stati
impostati dal filtro (zona di stoccaggio, categoria, giacenza nulla, fornitore) e risulta quindi abbastanza
complessa. Dal punto di vista logico si tratta di una semplice query alla base di dati, ma la possibilita di
impostare molti parametri complica non poca la sua realizzazione in quanto non tutti i filtri possono
essere impostati contemporaneamente, rendendo la gestione abbastanza problematica da controllare. La
prima scelta era ricaduta sull'utilizzo di una Stored Procedure dedicata, opportunamente parametrizzata,
che avrebbe consentito tempi di accesso ottimali e lo spostamente della logica sul server. E' stata
proprio quest'ultima caratteristica che ha pesato molto in sfavore di questa soluzione, sebbene infatti la
sintassi di Transact SQL sia molto completa non ¢ certo facile effettuare dei controlli multipli sui
parametri in ingresso, avendo come risultato un codice poco leggibile e sicuramente poco mantenibile.
Gestire invece da Visual Basic tutte le possibili combinazioni risulta molto piu facile e comprensibile,
permettendo soprattuto un debug molto piu accurato. L'uso di un Recordset lato server, in sola lettura e
a scorrimento in avanti (che crea fisicamente sulla base di dati un semplice cursore) non risulta cosi
oneroso rispetto a una Stored Procedure: non devono infatti essere gestiti join complessi ma un
semplice filtro sui dati. Si ¢ quindi preferito avvantaggiare la chiarezza del codice alle prestazioni dal
momento che queste non sarebbero migliorate sensibilmente.

Nella visualizzazione della giacenza per zone invece (ovvero il riquadro sottostante quello della
giacenza totale) si € preferito ricorrere a una vista opportunamente creata.

Una vista ¢ il risultato di una query SQL, viene usata come se fosse una tabella, ovvero si puo
dichiarare nella clausola “FROM” di uno statement SQL. Per definire una vista viene usata la sintassi
standard di SQL e non quella di Transact SQL.

Dovendo usare una vista come se fosse una tabella, non ¢ possibile specificare una clausola ”where”
nella sua definizione, clausola che deve essere impostata nel momento del suo utilizzo. In questo caso
specifico la vista rappresenta tutti gli articoli, con le relative giacenze, raggruppati per zone e
contenitori. Nella stringa SQL che serve per aprire il Recordset utilizzato (ovviamente lato server in
sola lettura e a scorrimento in avanti) viene posto il filtro che seleziona soltanto le giacenze per zona e

49

contenitori dell'articolo selezionato.

Come gia detto precedentemente la memorizzazione esplicita della giacenza (in questo caso della
tabella GiacenzaZoneArticoliFornitori) ha semplificato notevolmente il lavoro di ricavo dei dati,
dovendo semplicemente interrogare la tabella della giacenza (ovviamente in join con quella degli
articoli e dei contenitori per avere dati relativi appunto al contenitore utilizzato).

3.4.6 Elenco Movimenti Articoli Fornitori

4 5.p.P.> Elenco movimenti articolo -0l x|

mnul

—Articolo

Fornitore | |

Codice arkicalo |

De=scrizione

—Filtro di ricerca
v Includi Alinearmente v Includi Spostamenti

Da data I adata [+ Includi Scarico [+ Includi Carico Visualizza 4 |

—Operazioni
[wOper

Zarico I:I kg - Scarico I:Ikg + Alineamento I:Ikg = I:I kg
Giacenza Zone I:I kg Giacenza Tok I:I kg ERRCRE = |:| kg

IFigura 3.24: Elenco movimenti

Funzionalita del form

Tramite questo form (Figura 3.24) ¢ possibile visualizzare tutti i movimenti, da e verso il magazzino, di
uno specifico articolo, selezionato nel form di giacenza. Vengono visualizzati tutti i movimenti relativi
all’articolo, indipendentemente dal contenitore e dalla zona interessata, in modo da avere una
panoramica generale. Per ogni singolo movimento visualizzato vengono ovviamente indicate la zona
interessata e il contenitore utilizzato, mentre al di sotto vi ¢ 1’indicazione del totale di ogni singolo

50

movimento: totale dei carichi, degli scarichi e degli allineamenti.

L'utente ha la possibilita di visualizzare solo alcune specifiche tipologie di movimenti tramite le
checkbox apposite. In questo modo si ha una panoramica generale di tutte le operazioni effettuate
sull’articolo selezionato, ogni operazione con la specifica zona interessata, la data e il contenitore
utilizzato.

Si ¢ scelto di consentire di eliminare solo I’ultima operazione registrata, principalmente per due motivi.
Anzitutto per problemi di coerenza: se si elimina un vecchio carico, potrebbe capitare che 1 successivi
scarichi non abbiano sufficiente giacenza per essere effettuati. Di per se non sarebbe troppo difficile da
gestire, ma se si aggiunge che ¢ possibile effettuare degli spostamenti di un articolo da una zona
all’altra, la gestione si complica enormente, dovendo di fatto controllare tutti i movimenti passati per
controllare se 1’eliminazione puo essere effettuata.

La seconda ragione ¢ di ordine logico: poter eliminare un movimento effettuato magari mesi addietro
non dovrebbe essere permesso.

Gestione delle funzioni

Il form di giacenza, da cui questo viene richiamato, imposta tramite una property il codice dell'articolo
di cui si vogliono conoscere i movimenti. Dopo aver ricavato alcuni dati anagrafici, indispensabili
all'utente per riconoscere l'articolo che sta visualizzando, il form ¢ in attesa che l'utente imposti
l'intervallo temporale (di default ¢ impostato per comprendere tra il primo del mese corrente e la data
attuale) e che richieda I'elenco dei movimenti desiderati.

Anche in questo caso, come nel form di giacenza, ¢ richiesto alla base di dati un elenco di record da
visualizzare, dopo che l'utente ha impostato alcuni parametri. Nello specifico i parametri da impostare
sono: un'intervallo di data e dei flag che indicano 1 tipi di movimenti.

Rispetto al form di giacenza pero, a parte I'impostazione della data, 1'unica scelta che 1'utente puo fare ¢
di tipo binaria, ovvero se vuole visualizzare un movimento oppure no. Nella giacenza infatti, 1'utente
poteva selezionare quale zona o quale categoria di prodotti visualizzare, dovendo quindi controllare via
codice le scelte dell'utente. In questo caso invece si tratta di semplici flag facilmente gestibili. Date
queste premesse la scelta di usare una Stored Procedure al posto di un Recordset (come era avvenuto
nel caso della giacenza) ¢ stata quasi obbligata. Scelta resa necessaria anche dalla mole di lavoro che si
trova a dover gestire: non una semplice lettura di una tabella, ma un incrocio di 4 tabelle per fornire un
elenco cronologico dei movimenti.

All'utente infatti vengono presentati i movimenti ordinati in base alla data di esecuzione e non suddivisi
in base al tipo di operazione. Per realizzare questo ¢ stato necessario effettuare 4 subquery (una per
ogni tipo di movimento: carico, scarico, allinemento, spostamento) in relazione tra loro tramite il
comando “union all”, che permette di combinare il risultato di 2 o piu query in un singolo risultato
contenente tutte le righe di tutte le query dell'unione. Il risultato di questa query ¢ stato poi ordinato in
base alla data, dando come prodotto I'elenco di tutte le operazioni in ordine cronologico,
indipendentemente dal tipo di operazione.Ovviamente la Stored Procedure tiene conto dei parametri
impostati (intervallo di data e operazioni da visualizzare) nella creazione del risultato da presentare
all'utente, oltre che dover ricavare per ogni movimento il contenitore utilizzato

Possiamo notare come la complessita del lavoro che deve svolgere la base di dati ¢ sicuramente
superiore a quanto non dovesse fare per la presentazione della giacenza, rendendo quindi necessario
l'utilizzo di una Stored Procedure, a fronte di una minima complessita di codice della Stored Procedure

51

stessa per la gestione delle opzioni impostate dall'utente.

L'eliminazione di un movimento risulta di esecuzione abbastanza agevole, salvo il dover ricavare se
l'operazione che si desidera eliminare ¢ l'ultima operazione eseguito su quell'articolo oppure no.
Avendo a disposizione 1'ld dell'articolo questo controllo risulta abbastanza semplice: si ricerca nelle
tabelle carico/scarico/allineamento/movimenti una operazione posteriore a quella da eliminare.

Per eliminare una operazione viene rimosso fisicamente il record della tabella interessata e poi, tramite
un'apposita Stored Procedure vengono aggiornate le tabelle di giacenza totale e giacenza per zona.
Questa Stored Procedure viene utilizzata anche durante la registrazione dei
carichi/scarichi/allineamenti/spostamenti per aggiornare la giacenza con i nuovi valori.

Per aumentare la sicurezza dell'operazione l'intero processo avviene sotto transazione, tramite l'oggetto
connection. L'eliminazione del record dalla tabella infatti avviene tramite 1'esecuzione di uno statemant
SQL sfruttando l'oggetto connection di ADO, mentre l'aggiornamento delle giacenze (totale e per zona)
avviene tramite Stored Procedure, come gia detto. In questa situazione se dovesse esserci qualche
problema tra le due operazioni (caduta della rete, problema al server, etc..) la base di dati si troverebbe
in uno stato inconsistente, con cio¢ la giacenza calcolata e quella memorizzata differenti. Per ovviare a
questo problema si imposta una transazione sulla connessione prima dell'eliminazione e si chiude dopo
un risultato positivo della Stored Procedure.

Unico neo di questa gestione ¢ che mentre ¢ sotto transazione non ¢ possibile per l'utente utilizzare
l'oggetto connection, dovendo di fatto attendere il completamento delle operazioni. In effetti pero
questo ¢ un falso problema in quanto innanzitutto l'intera operazione, dovendo semplicemente
eliminare un record (l'operazione) e aggiornarne due (le due giacenze) ¢ estremamente rapida, in
secondo luogo per il tipo di programma: l'utente non puo svolgere due operazioni contemporaneamente.

52

3.4.7 Carico Magazzino

& +5.p_p.>» Carico magazzino

=101 x|

—Fornitore
Codice Ragione sociale

—Documenti di trasporto
anno di competenza

| -l

Data emissione Codice Bolla

Yizualizza &

Yigualizza & I

—Articoli caricati

Lt

.-“-‘-.ggiungi| Elimina I

Figura 3.25: Carico Magazzino

Funzionalita del form

Questo form (Figura 3.25) permette all'utente di visualizzare ogni singolo DDT (Documento di
Trasporto) con 1 relativi articoli registrati e consente di creare un nuovo DDT e di associarvi degli

articoli.

La parte inerente la selezione del fornitore ¢ la stessa di quanto gia visto per l'anagrafica e la giacenza,
con la possibilita quindi di selezionare direttamente il fornitore oppure di aprire un elenco completo o

filtrato.

Dopo aver scelto il fornitore si procede con la selezione del DDT, raggruppati per anno di competenza
e ordinati per data. E' possibile aggiungere un nuovo DDT (Figura 3.26) a quelli gia presenti tramite

una apposita maschera, in cui viene indicata la data e il codice che si vuole assegnare.

53

«5.P.P.= Definizione Documento di Trasporto x|

—Fornitore

Codice |

Ragione sociale | |

Codice DDT | Data |

Ok | Annulla |

’—Dncumemn di Trasporto

Figura 3.26: Aggiunta Documenti di T rasporto (DDT)

Dopo aver selezionato il DDT vengono visualizzati gli articoli gia registrati e caricati a magazzino, con
la possibilita di aggiungere un nuovo articolo e di eliminare quelli gia caricati in precedenza. In questo
caso ¢ possibile eliminare un carico (anche se non ¢ l'ultima operazione) purche la giacenza non risulti
negativa.

Gestione delle funzioni

Come gia abbiamo visto per il form di visualizzazzione della giacenza e dell'anagrafica degli articoli il
filtro inerente i1 fornitori ¢ gestito tramite un Recordset lato client compilato all'avvio del form, per
rendere le ricerche piu veloci e efficenti.

Dopo aver selezionato il fornitore e premuto il tasto “visualizza” viene aperto un Recordset lato server
che ricava tutti gli anni di competenza relativi a quel fornitore, ovvero tutti gli anni in cui sono stati
effettuati dei DDT. Questa gestione, come gia era successo con l'elenco degli articoli, permette di
ottimizzare l'utilizzo delle risorse della base di dati. In questo caso a maggior ragione la semplice
richiesta di un elenco di anni ¢ estremamente veloce e performante e non richiede molto lavoro alla
base di dati: una volta ricavati i dati questi vengono caricati nel controllo comboBox relativo. Rispetto
al filtro relativo ai fornitori infatti in questo caso ¢ presente un controllo che memorizza al suo interno i
dati necessari, senza dover quindi ricorrere a un Recordset disconnesso.

Sempre con la stessa logica sono gestiti anche i numeri di DDT che vengono caricati anch'essi tramite
un Recordset lato server all'interno di un controllo comboBox.

L'utilizzo di due controlli separati “in cascata”, uno per 1 soli anni di competenza, l'altro per 1 DDT,
rispecchia una esigenza dell'utente che ha tutti i DDT suddivisi per anno e che quindi vorrebbe avere la
stessa distinzione precisa anche tramite questo programma. Effettuare due query successive (una solo
per ottenere gli anni e una per avere i DDT relativi a quell'anno) invece di una sola che ricavava tutti 1
DDT di tutti gli anni risulta migliore in quanto, nonostante si aggiunge un certo overhead dovuto alla
doppia query, si evita di scaricare molti dati inutili. Nella maggior parte dei casi infatti all'utente
interessano soltanto 1 DDT dell'ultimo anno e quindi scaricare completamente tutto l'archivio risulta
insensato.

I dettagli di un DDT (ovvero gli articoli caricati) vengono prelevati anch'essi tramite un Recordset lato
server ¢ memorizzati all'interno di un controllo listView, con i relativi contenitori utilizzati.Questa
gestione € un compromesso di tutti i possibili modi con cui 'utente potrebbe usare questa maschera: se
da un lato infatti l'uso di tre Recordset lato server velocizza richieste molto differenti tra loro (fornitori
diversi, anni diversi etc) dall'altro penalizza leggemente accessi a dati simili (es DDT in sequenza

54

temporale) dove sarebbe piu performante scaricare direttamente tutto 'archivio inerente un fornitore.

3.4.8 Carico Articolo

<&P.P.> Carico Articolo x|

—Descrizione Articolo

Codice I AE

Zakegoria I

Prezzo

Descrizione |

Giacenza

—Carica

[vContenitari

Anagrafica

Zona di stoccaggio I j

I Conkenitore | Unitd di misura [Unita di misura secondaria

Carica nuoyo I Termina carico | annulla

Figura 3.27: Carico Articolo

Funzionalita del form

Assieme al form di scarico e di allineamento questo rappresenta una delle maschere piu utilizzate di
tutto il programma, permettendo di registrare operazioni di carico a magazzino (Figura 3.27).

Questo form viene richiamato da quello di carico magazzino, dove ¢ stato indicato il fornitore del
prodotto e il DDT interessato. A questo punto l'utente deve solo selezionare l'articolo da caricare, il
contenitore con il quale si presenta e la quantita (oltre alla data ovviamente). Tramite 1'apposita casella
si pud immettere un parametro di ricerca, con funzionalita simile alla scelta del fornitore visto gia altre
volte: se viene immessa una stringa e si preme [F9] verra visualizzato un elenco con tutti i prodotti che
rispondono al filtro impostato. Se l'articolo non ¢ presente nell'elenco, si pud aggiungerlo in anagrafica
tramite l'apposito bottone: verra visualizzato il form di definizione dell'articolo.

Dopo aver selezionato l'articolo verranno visualizzati nel controllo listView preposto 1 contenitori

55

associati (tramite il bottone “anagrafica” viene aperto il form di definizione dell'articolo in modalita
“modifica” che permette di modificare I'anagrafica). Dopo aver selezionato la quantita (espressa in
multipli di contenitori) e la zona di destinazione, 1'utente potra effettuare un nuovo carico(con un nuovo
articolo) oppure terminare I'operazione

Gestione delle funzioni

All'avvio del form viene caricato un Recordset lato client(disconnesso) contenente tutti gli articoli del
fornitore selezionato. In questo modo ¢ possibile effettuare delle ricerche, tramite la stringa immessa
dall'utente nell'apposita casella di testo, direttamente in locale, senza dover interrogare la base di dati.
La query di creazione di questo Recordset ricava solo i dati anagrafici che devono essere visualizzati
all'utente (anche la giacenza totale ad esempio) mentre non vengono scaricati i contenitori associati,
ricavati solo dopo che l'utente ha confermato 1'articolo.

In questo modo il carico della base di dati viene suddiviso in due query successive: prima viene
ricavato l'elenco degli articoli, con solo dati anagrafici, che serve per la ricerca in locale del prodotto
desiderato e successivamente, dopo aver scelto l'articolo, vengono scaricati 1 soli contenitori disponibili
per quel prodotto. Oltre all'alleggerimento del lavoro della base di dati (evitando di scaricare dati
inutili) ¢ possibile avere un miglior controllo sul lavoro che sta svolgendo ['utente: caricando i
contenitori in un secondo momento ¢ infatti facilmente controllabile se l'articolo selezionato ha
associato un contenitore, in caso contrario l'utente viene avvisato e gli viene data la possibilita, aprendo
il form di modifica dell'articolo, di aggiungere un contenitore.

Tramite il passaggio di un valore di ritorno il form di modifica indica se sono state fatte delle modifiche
anche ai dati anagrafici, in caso negativo ¢ sufficiente scaricare nuovamente i contenitori (appena
aggiunti dall'utente) e visualizzarli tramite I'apposito controllo.

Nella maggior parte dei casi infatti, per gli articoli nuovi, non ¢ presente nella definizione dell'articolo
nessun contenitore che di solito viene aggiunto al momento del carico. Si puo quindi facilmente notare
come questo semplice accorgimento permetta di evitare ogni volta di scaricare tutti gli articoli e 1
relativi contenitori per ogni modifica apportata.

Come gia visto per I'eliminazione di un movimento nel form di elenco dei movimenti, anche in questo
caso le operazioni di carico vengono effettuate sotto transazione.

La transazione viene avviata sulla connessione disponibile e subito dopo viene aperto un Recordset lato
server che aggiunge il movimento alla tabella dei carichi. L'aggiornamento delle giacenze viene invece
effettuato tramite l'apposita Stored Procedure, gia discussa precedentemente.

Le operazioni da e verso il magazzino sono state infatti implementate tutte con lo stesso criterio:
Recordset lato server per aggiornare la tabella dei movimenti (di volta in volta differente ovviamente) e
Stored Procedure per aggiornare le due giacenze (totale e per zona).

La Stored Procedure procedure quindi viene utilizzata in vari punti del programma, consentendo quindi
il riutilizzo del codice e la manutenzione del programma in fase di debug.

Le zone di stoccaggio sono ricavate tramite un Recordset lato server che viene chiuso subito dopo aver
compilato il combobox relativo.

Dopo aver terminato le operazioni di carico, viene ritornato al form di carico magazzino un flag che
indica se sono stati aggiunti articoli, e quindi se devono essere riscaricati i valori relativi a quel DDT
oppure se l'operazione ¢ stata annullata.

56

3.4.9 Scarico Articolo

<&.P.P= Scarico Articolo x|

Descrizione Articolo

Codice I
Descrizione

Giacenza 1 I Zona skaccaggio I

Giacenza 2 I Giacenza 3

—Scarico
I < Corrispondenza Quantita da scaricare =

Draka oper, I Destinazione I d

Scanca Annulla |

Figura 3.28: Scarico Articolo

Funzionalita del form

Tramite il form di giacenza l'utente ha gia selezionato 1'articolo che deve essere scaricato con il relativo
contenitore (ovvero tramite il controllo listView in basso).

In questo form (Figura 3.28) quindi non resta che indicare la quantita (espressa ovviamente in multipli
interi del contenitore selezionato), la data e la destinazione di impiego (dove verra utilizzato il
materiale).

Le tre caselle di testo Giacenza 1, 2 e 3 rappresentano la giacenza totale dell'articolo, nella specifica
zona indicata, espressa rispettivamente in contenitori (ovvero il numero intero di contenitori
disponibili) in unita di misura principale e in unita di misura secondaria.

Gestione delle funzioni

Cosi come avviene in tutti 1 form in cui l'utente deve indicare la quantita da movimentare, anche in
questo sorge il problema della gestione dei valori numerici. Come gia accennato precedentemente
l'utente indica il numero (intero) di contenitori da movimentare, ma le effettive operazioni vengono
registrate in unitd di misura principale, indipendentemente dal contenitore utilizzato. Questo ¢
necessario in quanto ¢ possibile associare piu contenitori ad un solo articolo, contenitori con capacita
ovviamente differente di volta in volta: sarebbe quindi impossibile avere una tabella di giacenza totale,
ma si avrebbe solo una tabella di giacenza per zona, dovendo calcolare direttamente ad ogni richiesta la
giacenza totale.

57

Molti articoli (ad esempio i liquidi) non possono avere associato un contenitore preciso con il quale
essere movimentati (vengono infatti acquistati in cisterne molto grandi o addirittura vengono versati nei
silos presenti in azienda) cosi come anche per molti prodotti in polvere.

In effetti ¢ questo I'unico vero inconveniente dell'uso di contenitori per effettuare i movimenti: non ¢
possibile associare un contenitore ad ogni articolo presente a magazzino. In questi casi si procede
quindi alla movimentazione tramite dei contenitori fittizzi, di capacita unitaria per sopperire al
problema: sono comunque allo studio (in collaborazione con il cliente) delle soluzioni per risolvere il
problema.

L'uso dei contenitori, anche se potrebbe sembrare a prima vista macchinoso sia per l'utente che per il
programmatore, ¢ risultato estremamente semplice per 1'utente, che dopo aver compilato 'anagrafica si
trova a lavorare con quantita intere, cosi come lavora nella realta (le richieste al magazziniere da parte
degli utilizzatori finali sono generalmente espresse in contenitori).

Anche se di difficile soluzione, i casi di liquidi o polveri senza contenitori sono molto bassi (meno del
2%) e quindi gestire queste eccezioni risulta abbastanza agevole.

3.4.10 Allinemento Giacenza/Modifica zone di Stoccaggio

«<%.P.P.> Allineamento Giacenza) |

—Anagrafica Articolo

Farnitare | |

Codice articolo | |

Descrizione

Unita di misura I:I Peso Specifico I:I Data liskino I:I
Scarka minima I:l

—Giacenza

IvGiacContZona

Allineamento T Modifica zone stoccagaio] Lﬁ'ﬁcal

Causale

I < Zontenitori = j I < Zone Skoccaggio = j

Yalore Attuale < giacenza attuale =

Muova Giacenza | Contenitore J Unita di misura [Applica |

Figura 3.29: Allineamento e modifica zone stoccaggio

58

Funzionalita del form

In questa maschera (Figura 3.29) vengono raccolte due funzioni di manutenzione del magazzino:
l'allineamento della giacenza e lo spostamento di articoli da una zona all'altra del magazzino.
L'operazione di allineamento ¢ del tutto straordinaria e si ha quando, per varie ragioni, si scopre che la
quantita di un prodotto effettivamente stoccata a magazzino ¢ differente da quanto registrato. Cio
potrebbe essere causato dalla mancata registrazione di un movimento da parte dell'utente, che si trova
con la giacenza reale non allineata con quella registrata, oppure dall'aver registrato una quantita errata.
Nella maggior parte dei casi ¢ possibile risalire al movimento mancante e registrarlo normalmente,
tuttavia alcune volte cid non ¢ possibile (soprattutto per i movimenti di scarico) e quindi si rende
necessaria questa operazione. L'utente ¢ tenuto a fornire una causale dell'allineamento e in ogni
momento ¢ possibile visualizzare questi movimenti.

Sebbene questa operazione risulti molto rara, in alcuni casi ¢ necessaria. E' ancora una volta il caso dei
liquidi o delle polveri, dove alcuni errori manuali (es un secchio che si rovescia) difficilmente vengono
registrati, rendendo difficile ricostruire correttamente la giacenza.

L'altra operazione registrabile ¢ lo spostamento di quantita da una zona all'altra del magazzino, dovuto
alla riorganizzazione delle zone.

Gestione delle funzioni

Questo form puo essere aperto sia dall'anagrafica di un articolo sia dalla giacenza. All'avvio, come gia
visto in altri form, viene caricata l'anagrafica tramite un Recordset lato server, chiuso immediatamente
dopo aver recuperato i dati e aver compilato 1 controlli relativi. All'interno del listView centrale viene
visualizzata la situazione a magazzino dell'articolo in modo dettagliato: vengono mostrate tutte le zone
in cui l'articolo € stoccato con i relativi contenitori utilizzati, in modo da offrire all'utente una visuale
chiara della situazione reale.

Questi dati vengono ricavati tramite un Recordset lato server che interroga la tabella della giacenza per
zone e quella dei contenitori, per ricavare le informazioni inerenti al contenitore utilizzato.

Dopo aver selezionato una particolare giacenza all'interno del listView, all'utente viene data la
possibilita di modifcare la quantita realmente presente, allineanto cosi la giacenza reale con quella
registrata.

Per fare questo associato al listView della giacenza ci sono due Recordset, uno per memorizzare la
quantita in giacenza in quella specifica zona e 'altro per memorizzare il contenitore utilizzato (e quindi
la corrispondenza). Anche se sarebbe stato possibile utilizzare un solo Recordset associato al listView
delle giacenze, ¢ risultato piu comodo usare due Recordset separati, in modo da poter aggiornare anche
della giacenze inesistenti. Se infatti in una particolare zona non ¢ presente un certo articolo con una
certa giacenza, deve essere possibile aggiungere una quantita in quella zona. Con 1'uso di due Recordset
l'operazione risulta facilitata.

Ogni volta che l'utente modifica la selezione all'interno del listView delle giacenze devono essere
modificati anche 1 comboBox relativi alle zone di stoccaggio e dei contenitori, in modo da avere tutti 1
valori presentati all'utente omogenei tra loro. L'utente pud ovviamente selezionare una coppia
contenitore-zona in cui la giacenza sia nulla (e che quindi non risulta inserita all'interno del listView
delle giacenze) in modo da poter allineare una quantita effettivamente nulla.

59

Ogni volta che I'utente modifica la selezione all'interno del listView viene aggiornata anche la parte
inerente lo spostamento di quantita da una zona all'altra.In entrambi il cambiamento della selezione nel
listView provoca innanzitutto la ricerca all'interno del Recordset della giacenza e dei contenitori il
record scelto(tramite il metodo find di ADO applicato ai Recordset); dopo aver ricavato quindi il
contenitore € la zona interessata (sotto forma di indice ovviamente) vengono allineati i comboBox
relativi. Risulta ovviamente chiaro come l'intero procedimento sia molto delicato e abbia necessitato di
una accurata fase di testing.

L'operazione di allineamento risulta abbastanza semplice da gestire, l'utente infatti indica
semplicemente la nuova quantita presente in quella zona e il programma provvede a modificare la
giacenza totale e quella di zona tramite l'apposita Stored Procedure gia vista altre volte. Per la
registrazione del movimento effettuato (da registrare sulla tabella AllineamentoArticoliFornitori) ¢
sufficiente eseguire una semplice sottrazione tra il valore inserito dall'utente e quello realmente
presente a magazzino. Quest'ultima operazione viene eseguita tramite un Recordset lato server, nella
stessa transazione aperta precedentemente per modificare 1 dati di giacenza.

Per quanto riguarda la registrazione di uno spostamento tra una zona e l'altra € necessario introdurre un
controllo aggiuntivo sui dati: non ¢ possibile spostare da una zona una quantita superiore a quella in
giacenza in quella zona specifica. L'intera operazione di spostamento viene effettuata tramite
un'apposita Stored Procedure che provvede a modificare la tabella di giacenza per zona e a registrare il
movimento. L'uso di una Stored Procedure unica, e non come negli altri casi dell'accoppiamento Stored
Procedure e Recordset lato server sotto transazione, si ¢ reso necessario per la complessita delle
operazioni da svolgere. Per modificare la giacenza nella tabella giacenza per zona infatti ¢ necessaria la
modifica di due record all'interno di una stessa tabella, operazione certamente semplice ma che prevede
una complessita maggiore a livello di codice se espressa in SQL standard mentre risulta piu agevole se
scritta in T-SQL. Questa Stored Procedure inoltre viene utilizzata anche per l'eliminazione dei
movimenti (form dettagli movimenti) e quindi risulta piu economico adottare un'unica Stored
Procedure da richiamare in due punti

60

3.5 Stored Procedure

Le stored procedure sono utili nello sviluppo di una applicazione che si deve interfacciare a una base di
dati. Esse aiutano a separare l'applicazione client dalla sottostante struttura dati e a semplificare la
scrittura del codice aumentando la stabilita e la scalabilita dell'applicazione. Attraverso le stored
procedure ¢ possibile creare codice in grado di essere veramente riutilizzabile.

A livello applicativo 1 punti a favore dell'uso delle stored procedure nello sviluppo dei programmi data-
driven sono due:

1. Sicurezza dei dati
2. Velocita di esecuzione

Le stored procedure facilitano I'implementazione della sicurezza dei dati della base di dati. Se infatti
vengono assegnati dei diritti di esecuzione su una procedura ad utenti o gruppi non & necessario
assegnare gli stessi privilegi a tutti gli oggetti (tabelle, viste, ecc...) chiamati all'interno della procedura.
Per questo motivo ¢ molto efficace includere i report e le query che interessano all'interno delle stored
procedures ed assegnare i privilegi di accesso solamente agli utenti interessati alla loro visualizzazione.

Sempre attraverso le stored procedures ¢ possibile aggiungere, modificare o eliminare i dati.

Queste operazioni cosi delicate possono essere blindate includendo nelle stored procedures le istruzioni
per aggiungere, modificare o eliminare i dati ed assegnando agli utenti e ai gruppi autorizzati i diritti di
esecuzione esclusivamente sulle stored procedures e non direttamente sugli oggetti che vengono
richiamati al loro interno.

In particolare sono state utilizzate Stored Procedure, per ragioni di sicurezza, nel momento in cui era
necessario effettuare operazioni su piu tabelle in sequenza, potendo quindi racchiudere una transazione,
gestita completamente dalla base di dati, in un'unica Stored Procedure.

Le stored procedures aumentano enormemente le performance dei programmi perché sono pre-
compilate e quindi eseguite piu rapidamente. Per ognuna di esse SQL Server genera un query plan
contenente il metodo piu efficiente di esecuzione della procedura il quale si basa su differenti
informazioni come indici disponibili, costi /O ed altri parametri ambientali. Una volta calcolato il
miglior query plan possibile SQL Server lo salva nella memoria cache e lo riutilizzera ogni qualvolta
verra richiamata la procedura.

Altro beneficio importante derivante dall'impiego delle stored procedure ¢ il tempo minimo del lock dei
dati durante l'esecuzione rispetto all'equivalente tempo se le istruzioni SQL venissero inviate
dall'applicazione client. Questa caratteristica ¢ particolarmente utile nel caso di trasferimento di grandi
quantita di dati (es: la richiesta di tutti i movimenti inclusi in un dato periodo) in cui generalmente si
fanno piu ricerche mirate in sequenza, riducendo i tempi medi di risposta.

61

3.5.10 Stored Procedure utilizzate

Introduzione

All'interno del programma le Stored procedure sono state utilizzate, come gia detto in precedenza, per
ragioni di sicurezza e stabilita in associazione con le transazioni, attivate tramite 1'oggetto connection
alla base di dati.

Transazione di Carico

Le operazioni di carico a magazzino vengono effettuate all'interno di una transazione, iniziata
all'interno del programma scritto in Visual Basic, continuata tramite una Stored Procedure e terminata
di nuovo tramite Visul Basic. L'oggetto “connection”, che gestisce la connessione alla base di dati
permette di iniziare una transazione tramite il comando “BeginTrans” e di terminarla tramite il
comando "CommitTrans”. Vediamo nel dettaglio il codice

'transazione che gestisce il carico di un articolo su un DDT
Private Function TransazioneCarico() As Boolean

Dim s As String
Dim rs As ADODB.Recordset

In caso di errori viene richiamata la procedure preposta alla loro gestione
On Error GoTo gestErr
s = "SELECT * FROM ArticoliFornitoriCaricati WHERE 1 = 0"
Viene aperta la transazione

Y/// INIZIO TRANSAZIONE \\\|
m_Conn.BeginTrans

Set rs = New ADODB.Recordset

rs.CursorLocation = adUseClient

rs.Open s, m_Conn, adOpenStatic, adLockOptimistic, adCmdText
rs.AddNew

rs("AFCIADTF").value = m_idDDT

rs("AFCIdRevAF").value = RecordsetArt("AFRevld").value
rs("AFCIdArFo").value = RecordsetArt("AFId").value

62

rs("AFCQt").value = CaricaUMP

rs("AFCDatCar").value = Format(Now, GenF.DateFormat + " hh.mm.ss")
rs("AFCPreUni").value = RecordsetArt("AFPreUni").value
rs("AFCIdACPA").value = Mid(lvContenitori.Selectedltem.key, 2)
rs("AFCIdZSAF").value = cbZona.ltemData(cbZona.ListIndex)

Viene aggiornata la tabella relativa i carichi, inserendo il movimento appena effettuato tramite il
RecordSet preposto

rs.Update
rs.Close: Set rs = Nothing

If CmdGiac Is Nothing Then
Set CmdGiac = New ADODB.Command

Viene richiamata la Stored Procedure preposta all'aggiornamento delle tabella “GiacenzaPerZona” e
“GiacenzaTotale”

With CmdGiac
ActiveConnection = m_Conn
.CommandText = "sp_Update_GiacenzaArticoliFornitori"”
.CommandType = adCmdStoredProc
.Parameters.Append .CreateParameter("ldArt", adlnteger, adParamiInput)
.Parameters.Append .CreateParameter("ldCPA", adlnteger, adParamlInput)
.Parameters.Append .CreateParameter("ldZSAF", adlnteger, adParamiInput)
.Parameters.Append .CreateParameter("Qt", adDecimal, adParamInput)
.Parameters(3).Precision = 18
.Parameters(3). NumericScale = 6
.Parameters.Append .CreateParameter("Oper", adSmalllnt, adParamInput)
.Parameters.Append .CreateParameter("NuovaGiacenzaTotale", adDecimal, adParamQutput)
.Parameters(5).Precision = 18
.Parameters(5). NumericScale = 6
.Parameters.Append .CreateParameter("NuovaGiacenzaZona", adDecimal, adParamQOutput)
.Parameters(6).Precision = 18
.Parameters(6). NumericScale = 6

End With

End If

"Tramite l'apposita SP aggiorna la tabella GiacenzaArticoliFornitori
'Nella tabella della giacenza gli articoli sono raggruppati secondo lo
'stesso id di revisione, in modo da avere la giacenza complessiva di
'tutte le revisioni dell'articolo.
'L'ld di revisione dell'articolo viene ricavato dalla SP.
'serve la quantita caricata espressa in unita di misura principale
With CmdGiac

.Parameters("ldArt").value = RecordsetArt("AFId").value

63

.Parameters("ldCPA").value = Mid(lvContenitori.SelectedItem.key, 2)
.Parameters("ldZSAF").value = cbZona.ltemData(cbZona.ListIndex)
.Parameters("Qt").value = Abs(CaricaUMP)
.Parameters("Oper").value = 1

Execute
End With

Se tutto ¢ andato a buon fine, viene effettuato il “Commit”

m_Conn.CommitTrans
"WFINE TRANSAZIONE////

TransazioneCarico = True

Exit Function
In caso di errori viene mostrato un avviso all'utente e viene effettuato il “RollBack” della transazione.

gestErr:
m_Conn.RollbackTrans
MsgBox "Errore durante il salvataggio dei dati sul DDT!" & vbNewLine & _
err.Description, vbCritical, GenF.AT3
If GenF.IDEMode Then Stop: Resume Else Unload Me

End Function

Vediamo ora il codice della transazione che aggiorna le due tabelle relative alla giacenza:

/*

In base ai parametri in ingresso aggiunge o toglie la quantita specificata dalla giacenza del singolo
articolo;
se l'articolo non esiste allora viene aggiunto alla tabella GiacenzaArticoliFornitori, mentre se non esiste
e l'operazione ¢ uno scarico allora restituisce -1; se lo
scarico ¢ maggiore della giacenza allora restituisce -2

*/
CREATE Procedure dbo.sp Update GiagenzaArticoliFornitori
@]IdArt Int,
@Qt Real,
@Oper smalllnt,

@NuovaGiacenza Real OUTPUT
As
Set nocount on

64

DECLARE @IdRev as INT, @PreUni as REAL

/ *

Viene ricavato I'ld di revisione dell'articolo

&

SELECT TOP 1 @IdRev = AFRevld, @PreUni = AFPreUni FROM ArticoliFornitori
WHERE AFId = @IdArt

/*

Nel caso in cui l'indice di revisione non sia stato associato alla riga, viene utilizzato 1'ld di riga stesso
Questa condizione non si deve verificare e provocherebbe un errore nella SP; la riga di codice seguente
ripara l'errore

*/

SET @IdRev = ISNULL(@IdRev,@IdArt)

SET @PreUni = ISNULL(@PreUni,0)

/*giacenza attuale™/
Declare @NowQt Real

SELECT @NowQt = -1

Tagl:

SELECT TOP 1 @NowQt = GAFQt FROM GiacenzaArticoliFornitori
WHERE GAFIdRevAF = @IdRev

/* se l'articolo non esiste */

if @NowQt = -1
begin
/* se 'operazione € uno scarico */
if @Oper = -1
Begin

/* esce avvertendo dell'errore */
SELECT @NuovaGiacenza = -1
RETURN
end
else
begin
/* se 'operazione € un carico crea il nuovo articolo con i1 prezzi di listino */
INSERT INTO GiacenzaArticoliFornitori (GAFIdRevAF, GAFQt, GAFPreUni, GAFDaUIlOp)
VALUES (@IdReyv, 0, 0, GetDate())
/* ora che l'articolo ¢ in giacenza ¢ possibile ri-eseguire la ricerca dell'articolo */
goto tagl
end
end

65

if (@NowQt < @Qt) AND (@Oper <0)
begin
SELECT @NuovaGiacenza = -2
RETURN
end

/*
A questo punto una giacenza deve per forza esistere nella tabella;

viene quindi aggiornata la quantita e il prezzo
*/

UPDATE GiacenzaArticoliFornitori

SET GAFQt = GAFQt + (@Qt * @Oper),
GAFPreUni = GAFPreUni + (@PreUni * @Qt * @Oper),
GAFDaUlOp = GetDate()

WHERE GAFIdRevAF = @IdRev

/>l<

Restituisce il valore della nuova giacenza

*/

SELECT TOP 1 @NuovaGiacenza = GAFQt FROM GiacenzaArticoliFornitori
WHERE GAFIdRevAF = @IdRev

Transazione di Scarico

Specularmente alla gestione dei carichi a magazzino anche gli scarichi vengono effettuati registrando 1
movimenti sulla tabella ArticoliFornitoriScaricati tramite un RecordSet e modificando la giacenza
tramite un'apposita Stored Procedure.

Private Sub TransazioneScarico()
Dim s As String
Dim rs As New ADODB.Recordset
rs.CursorLocation = adUseServer
'indica se l'errore e stato scatenato dalla SP
Dim ErrSP As Boolean
On Error GoTo gestErr

Viene attivata la transazione

Y//INIZIO TRANSAZIONE\\\
m_Conn.BeginTrans

66

"l'errore e nella SP

ErrSP = True

'aggiornamento della tabella GiacenzaArticolifornitori e GiacenzaPerZoneAF

Dim Cmd As New ADODB.Command

With Cmd

ActiveConnection = m_Conn

.CommandText = "sp_Update_GiacenzaArticoliFornitori"”

.CommandType = adCmdStoredProc

'I'ld di revisione dell'articolo viene ricavato dalla SP

.Parameters.Append .CreateParameter("ldArt", adlnteger, adParamiInput, , m_IdArt)
.Parameters.Append .CreateParameter("ldCPA", adlnteger, adParamlnput, , m_IdCont)
.Parameters.Append .CreateParameter("ldZSAF", adlnteger, adParamiInput, , m_idZSAF)
.Parameters.Append .CreateParameter("Qt", adDecimal, adParamInput, , Abs(ScaricaUMP))
.Parameters(3).Precision = 18

.Parameters(3). NumericScale = 6

.Parameters.Append .CreateParameter("Oper", adSmalllnt, adParamiInput, , -1)
.Parameters.Append .CreateParameter("NuovaGiacenzaTotale", adDecimal, adParamQOutput)
.Parameters(5).Precision = 18

.Parameters(5). NumericScale = 6

.Parameters.Append .CreateParameter("NuovaGiacenzaZona", adDecimal, adParamQOutput)
.Parameters(6).Precision = 18

.Parameters(6). NumericScale = 6

Viene eseguita la Stored Procedure che aggiorna entrambe le tabelle relative alla giacenza, dopo aver
impostato 1 parametri necessari e aver specificato le variabili.

.Execute

If Not IsNull(.Parameters("NuovaGiacenzaTotale").value) Then
NewTotGiac = .Parameters("NuovaGiacenzaTotale").value

Else
'se viene ritornato un valore null significa che si e verificato un errore
GoTo gestErr

End If

If Not IsNull(.Parameters("NuovaGiacenzaZona").value) Then
NewGiacZona = .Parameters("NuovaGiacenzaZona").value

Else
'se viene ritornato un valore null significa che si e verificato un errore
GoTo gestErr

End If

End With

67

Set Cmd = Nothing

'se la giacenza e un valore negativo, c'é stato un problema e l'operazione viene annullata

If (NewTotGiac < 0) Or (NewGiacZona < 0) Then GoTo gestErr

'da adesso l'errore non é piu della SP
ErrSP = False

s = "SELECT * FROM ArticoliFornitoriScaricati WHERE 1 = 0"
rs.Open s, m_Conn, adOpenDynamic, adLockOptimistic, adCmdText
rs.AddNew

rs("AFSIdRevAF").value = m_IdRevArt

rs("AFSQt").value = Abs(ScaricaUMP)

rs("AFSData").value = CDate(txSDataOp. Text)
rs("AFSDataReg").value = Format(Now, GenF.DateFormat + " hh.mm.ss")
il rs viene posizionato sulla causale correntemente visualizzata

'e gia stato effettuato il controllo sulla correttezza del contenuto del
‘comboBox delle causali di scarico

s = "DIPDescri = "" & CbDesSca.Text & """

RsDesSca.Find s, 0, adSearchForward, adBookmarkFirst
rs("AFSCodDIP").value = RsDesSca("DIPFlag").value
rs("AFSIdCPA").value = m_IdCont

rs("AFSIldMaga").value = m_ClsMaglnt.p IdMagazzinolnt
rs("AFSIdZSAF").value = m_idZSAF

Viene inserito il movimento all'interno della tabella degli scarichi

rs.Update
rs.Close: Set rs = Nothing

m_Conn.CommitTrans
"WFINE TRANSAZIONE///

Exit Sub

In caso di errori viene avvisato l'utente e viene effettuato il RollBack di tutta la transazione. Da notare il
differente messaggio di errore nel caso l'errore sia stato generato all'interno della Stored Procedure
oppure sia stato causato dal codice eseguito direttamente da Visual Basic.

gestErr:
m_Conn.RollbackTrans
If GenF.IDEMode Then
'se é un errore della Sp
If ErrSP Then
MsgBox "Errore nella SP di aggiornamento della giacenza", vbCritical
Else
MsgBox "Errore nel Rs di inserimento di valori nella tabella ArticoliFornitoriScaricati”
End If

68

Stop
Else
MsgBox "Errore nel salvataggio dei dati" & vbNewLine & err.Description & _
vbNewlLine & "ripetere l'operazione"”
Unload Me
End If
End Sub

Articolo Fornitore Movimentato

Questa Stored Procedure controlla all'interno delle tabelle di carico scarico e allincamento se un
determinato articolo ¢ stato movimentato oppure no. Viene utilizzata all'interno del form di anagrafica
degli articoli per consentire o meno all'utente di modificare certe caratteristiche dell'articolo che
renderebbero inconsistente il sistema e per permettere 1'eliminazione fisica del record: nel caso sia stato
movimentato l'articolo deve essere segnato come non piu corrente, in modo che non sia piu visibile
all'utente in anagrafica ma sia ancora presente nella base di dati per visualizzare i1 dettagli dei
movimenti.

CREATE Procedure dbo.sp_ArticoloFornitore_Movimentato

(
@IdArt Int,

@Movim bit OUTPUT

As
DECLARE @IdRev as INT

/*

Viene ricavato I'ld di revisione dell'articolo che si vuole movimentare:
4

SELECT TOP I @IdRev = AFRevld FROM ArticoliFornitori
WHERE AFIld = @IdArt

/*

Nel caso @IdRev fosse nullo viene ritornato (@IdArt, altrimenti @IdRev
*/

SET @IdRev = ISNULL(@IdRev, @ldArt)

/*
Viene controllata la presenza dell'articolo nella tabella ArticoliFornitoriCaricati

ricercandolo tramite ['ld di revisione
x/

69

SELECT TOP [AFCId FROM ArticoliFornitoriCaricati INNER JOIN
ArticoliFornitori ON AFCIldArFo = AFIld
WHERE AFRevld = @lIdRev

SET @Movim = @@RowCount
IF @Movim <> 0 Return

/*

Viene controllata la presenza dell'articolo nella tabella ArticoliFornitoriScaricati

ricercandolo tramite I'ld di revisione

*/

SELECT TOP 1 AFSId FROM ArticoliFornitoriScaricati INNER JOIN
ArticoliFornitori ON AFSIdArFo = AFId
WHERE AFRevld = @IdRev

SET @Movim = @@RowCount

Implementazione indici di revisione

Tramite questa Stored Procedure vengono impostati gli indici di revisione quando l'utente effettua una
modifica ad un articolo che non deve essere retroattiva. Questo record diventera quindi la revisione
corrente dell'articolo, assumento il valore “1” nel campo “AFRevCor” mentre la vecchia revisione
corrente avra questo bit settato a “0” (come tutte le altre revisioni dello stesso articolo). In pratica ogni
nuova revisione di un articolo diventa quella corrente e quella vecchia viene impostata come non piu
corrente. Il campo “AFRevld” della nuova revisione viene invece impostato come 1'ld della prima
revisione dell'articolo: tutte le revisioni di uno stesso articolo hanno questo campo impostato allo stesso
valore, che corrisponde all'ld di tabella della prima revsione dell'articolo, in modo che sia possibile
accomunare tutte le revisioni di uno stesso articolo.

/*

Crea l'indice di revisione per la tabella ArticoliFornitori

- Oldld e l'id articolo Fornitore del 'vecchio' articolo (quello revisionato)
- Newld e I'ld del nuovo articolo (quello che andra a sostituirsi)

*/

CREATE Procedure sp_IndiceRev_ArticoliFornitori

(
@New 1d as Int,

@Old _Id as Int

As

70

DECLARE @Revld Int

UPDATE ArticoliFornitori SET AFRevCor = 0
WHERE AFIld = @Old 1d

SELECT TOP | @Revld = AFRevld
FROM ArticoliFornitori
WHERE AFld = @Old _Id

/* Restituisce @Old _Id solo se @Revld é Null */
SET @Revild = ISNULL(@Revld, @Old_Id)

/* E'una ripetizione nel caso in cui (@Revld non era Null */
UPDATE ArticoliFornitori SET AFRevld = @Revld WHERE AFld = @OIld _Id

UPDATE ArticoliFornitori

SET AFRevCor = 1, /* imposta l'articolo come corrente */
AFRevld = @RevIld /* associa l'ld di revisione */

WHERE AFld = @New Id

3.6 Note su Transact SQL (T-SQL)

SQL ¢ un linguaggio non procedurale con cui gli utenti possono:
1. creare e modificare i databases e gli oggetti contenuti nei databases
2. recuperare e manipolare le informazioni contenuti sui databases. SQL ¢ un linguaggio di alto
livello molto semplice da utilizzare e permette di interrogare la base di dati con “domande"” in
linguaggio naturale (SELECT ... FROM), ma possiede un limite: non ¢ stato concepito per la
programmazione.

La programmazione richiede funzionalita aggiuntive che vanno dalle istruzioni per il controllo del
flusso alla modularita. Per ovviare a questo limite Microsoft ha creato per SQL Server Transact-SQL
che a differenza di SQL ¢ un linguaggio procedurale. T-SQL non ¢ standard come SQL anche se ¢
conforme alle specifiche dell’ANSI-92 SQL ed ¢ un linguaggio proprietario che ¢ possibile utilizzare
solo con SQL Server. Non ¢ supportato da altre base di dati (come Oracle o MySQL). T-SQL oltre ad
ereditare 1 vantaggi di semplicita e immediatezza di SQL nell’interrogazione della base di datis include
una vasta gamma di comandi e istruzioni di controllo che permettono all’utente di lavorare su ogni
oggetto e su ogni informazione contenuta in SQL Server (tabelle, indici, login, jobs, alert, backup,
ecc...). T-SQL ¢ possibile rappresentarlo con questa formula:

T-SQL = SQL + Estensioni Microsoft

71

In Microsoft’s SQL Server ¢ possibile usare indifferentemente sia istruzioni SQL che T-SQL, ad
esempio la SELECT di SQL Standard o quella piu sofisticata di T-SQL. Ecco una panoramica delle
componenti aggiunte da Microsoft’s:

1. Batch

Variabili (locali e globali)
Cursori scrollabili
Procedure memorizzate
Tipi di dati

Comandi T-SQL
Gestione degli errori

Nownbkw

72

Capitolo 4

Conclusioni

Questo lavoro, facendo parte di un progetto piu grande, ha contribuito allo sviluppo di una applicazione

client server per la gestione amministrativa di una azienda. Dovendosi inserire all'interno di un

programma piu ampio ¢ stato necessario interfacciarsi con altri moduli e componenti gia implementate.

Il lavoro, svolto in stretto contatto con il cliente finale, ha permesso lo sviluppo di un prodotto molto

vicino alle reali esigenze, ottimizzando di fatto la gestione amministrativa dell'azienda.

Partendo da richieste precise si € portato avanti un progetto enterprise rilasciato in varie versioni

successive, ottimizzando di volta in volta le funzionalita disponibili per l'utente su specifiche

indicazioni da parte del cliente.

Il progetto ¢ tuttora in sviluppo e sono molte le possibili aggiunte disponibili, alcune delle quali sono

gia in fase di progettazione. Queste riguardano il programma nella sua interezza e non solo nella

gestione del magazzino. In particolare:

« Introduzione di una interfaccia semplificata da utilizzarsi tramite le postazioni installate presso le
linee lavorative, per poter gestire agevolmente le attivita piu frequenti. Sara possibile per I'operatore
ad esempio registrare direttamente ogni aggiunta di prodotto all'interno delle vasche di lavorazione.

« Introduzione di lettori a codici a barre per effettuare le operazioni da e verso il magazzino: sara
sufficiente leggere il codice associato a ogni prodotto e indicarne la quantita, minimizzando quindi i
possibili errori e rendendo l'operazione piu veloce

+ Pubblicazione su di un sito dinamico, accessibile anche dall'esterno previa autenticazione, dello stato
di lavorazione degli articoli dei clienti: ogni cliente potra cosi direttamente visionare lo stato del
proprio ordine in tempo reale.

« Possibilita di utilizzare 1'applicazione da remoto, connettedosi al server e alla base di dati tramite la
rete internet. E' necessaria ovviamente una gestione piu approfondita della sicurezza.

- Possibilita di rendere 1'applicativo

Tutti questi possibili sviluppi sono al momento allo studio per una loro reale implementazione per

rispondere maggiormente alle esigenze del cliente e per una migliore ottimizzazione delle risorse
disponibili.

73

Bibliografia

[1]— G. Cornell - “Visual Basic 6” - Mc Graw Hill, 1998

[2] — F. Balena - “Programmare in Visual Basic 6.0” - Mondadori Informatica, 1999

[3] - .Ben-Gan, T. Moreau - “TransactSQL Programmazione avanzata” - Mondadori Informatica, 2001

[4] — it.comp.lang.visual-basic

[5] — http://support.microsoft.com

[6]

[7] — http://www.html.it

8] — Microsoft SQL Server Books Online
]

[9] — Microsoft MSDN Library

— http://msdn.microsoft.com

—

74

