Quando si costruisce un sistema caratterizzato dalla possibilità di avere collegamenti vicini e collaborazioni basate su istanze, gli sviluppatori hanno generalmente il controllo completo su tutti i componenti dei proprio prodotti. Tuttavia, molte applicazioni di una certa complessità contengono sottosistemi separati tra loro e che devono interagire con applicativi preesistenti e che non sono generalmente sotto il controllo dell’organizzazione che sta sviluppando il software. Il risultato è che spesso soluzioni complesse devono interagire con funzioni che sono controllate dall’esterno e che devono essere usate così come si presentano.
Classi, oggetti, componenti e interfacce sono alla base dei moderni applicativi. Alcuni di questi elementi ne incorporano altri, mentre altri forniscono infrastrutture di sistema e architetture tecniche. Ciascun blocco base fornisce funzioni utili ma la vera forza di questi sistemi è da ricercare nella composizione di elementi differenti in una soluzione collaborativi che fornisce un business tangibile alla società che li sfrutta.
Per abilitare questo livello di collaborazione è necessario che gli elementi del software aderiscano a dei principi organizzativi comuni e devono esporre interfacce standard tra di loro. Quando i componenti sono diversi, uno deve adattarsi agli altri, oppure entrambi devono adattarsi ad uno standard comune.
I lavori basati su Web Services lavorano bene in ambienti dove le applicazioni che li consumano non hanno nessun controllo sul servizio remonto o devono interoperare con soluzioni sviluppate con differenti linguaggi o piattaforme.

Le interfacce basate su Web Services espongono una sola istanza di un’interfaccia che fornisce i servizi ai potenziali consumatori. Nel contesto dei Web Services, Microsoft definisce un servizio software come “una unità discreta di logiche di applicazioni che espongono interfacce basate su messaggi disponibili per essere accessibili tramite una rete”-
Un servizio non deve dipendere dal processo che lo richiama, deve essere indipendente dal contesto e autocontenersi. Questo permette ad ogni potenziale consumatore sulla rete di accedere al servizio.

Un servizio viene detto ben definito quando c’è un “contratto” che specifica il formato per le richieste al servizio e il formato delle risposte associate.
Anche se non basati necessariamente sui messaggi, il creare un insieme di servizi raggruppati logicamente è una tecnica in uso già da prima dell’avvento delle applicazioni distribuite. Per esempio, i sistemi operativi forniscono servizi alle applicazioni che girano su di esso: le librerie GDI di Microsoft Windows forniscono servizi grafici, e le API per ODBC (Open Database Connectivity) espongono servizi per l’accesso ai database.
Architetture Service Oriented

Le architetture Service Oriented (SOA) applicano il concetto di servizio per distribuire le applicazioni di una azienda. In una SOA ciascuna applicazione espone delle funzioni come servizi che devono essere consumatida altre applicazioni, A causa della complessità di queste soluzioni orientate ai servizi, una architettura SOA deve fornire funzioni addizionali dietro la capacità di eseguire un servizio remoto. Le più importanti di queste funzioni sono:

